化工学报 ›› 2025, Vol. 76 ›› Issue (11): 5764-5775.DOI: 10.11949/0438-1157.20250476
彭桂荣(
), 王奕淋, 覃静沂, 王智彬(
), 莫松平, 陈颖
收稿日期:2025-05-06
修回日期:2025-07-16
出版日期:2025-11-25
发布日期:2025-12-19
通讯作者:
王智彬
作者简介:彭桂荣(2001—),男,硕士研究生,mojusy@163.com
基金资助:
Guirong PENG(
), Yilin WANG, Jingyi QIN, Zhibin WANG(
), Songping MO, Ying CHEN
Received:2025-05-06
Revised:2025-07-16
Online:2025-11-25
Published:2025-12-19
Contact:
Zhibin WANG
摘要:
双重乳液滴是指液滴内部还包含更小液滴,因其独特的壳核结构而备受关注,常被作为反应单元实现诸多功能。本研究提出利用激光光热效应诱导热毛细流动实现双核双重乳液滴核聚并,并采用CLSVOF方法追踪相界面研究其核聚并特性。结果表明:当激光照射两个内液滴中心时,激光局部热效应会在内外界面诱导形成热毛细流动,共同驱动内液滴相互靠近发生聚并;当光斑半径从20 μm增加至50 μm时,内液滴吸收热量增多,温差增大使热毛细流动更强,聚并发生时间逐步提前;当光斑半径进一步增大,内液滴聚并发生时间又逐步推迟;激光功率越小,内液滴聚并发生时间越晚;内液滴半径越大,由于吸收热量增多及初始界面距离缩短,内液滴越早聚并。
中图分类号:
彭桂荣, 王奕淋, 覃静沂, 王智彬, 莫松平, 陈颖. 光热操控双核双重乳液滴核聚并特性[J]. 化工学报, 2025, 76(11): 5764-5775.
Guirong PENG, Yilin WANG, Jingyi QIN, Zhibin WANG, Songping MO, Ying CHEN. Mechanisms of dual-core-coalescence in double-emulsion droplets via photothermal manipulation[J]. CIESC Journal, 2025, 76(11): 5764-5775.
| 工质 | 密度/(kg/m3) | 比热容/(J/(kg·K)) | 热导率/(W/(m·K)) | 黏度/(Pa·s) | 表面张力/(N/m) |
|---|---|---|---|---|---|
| 水 | 998.2 | 4996.047-5.29412T+0.00858T2 | -0.6028+0.00658T-8.42644×10-6T2 | 0.06225-5.09763×10-4T+1.41113×10-6T2-1.3137×10-9T3 | 0.02-1×10-4(T-300) |
| 十六烷 | 773.4 | 28994.24-244.7219T+0.73241T2-7.17898×10-4T3 | 0.18745-1.32437×10-4T-8.53221×10-8T2 | 0.153593-1.22841×10-3T+3.33586×10-6T2-3.05677×10-9T3 |
表1 水和十六烷的物性参数
Table 1 Physical properties of water and hexadecane
| 工质 | 密度/(kg/m3) | 比热容/(J/(kg·K)) | 热导率/(W/(m·K)) | 黏度/(Pa·s) | 表面张力/(N/m) |
|---|---|---|---|---|---|
| 水 | 998.2 | 4996.047-5.29412T+0.00858T2 | -0.6028+0.00658T-8.42644×10-6T2 | 0.06225-5.09763×10-4T+1.41113×10-6T2-1.3137×10-9T3 | 0.02-1×10-4(T-300) |
| 十六烷 | 773.4 | 28994.24-244.7219T+0.73241T2-7.17898×10-4T3 | 0.18745-1.32437×10-4T-8.53221×10-8T2 | 0.153593-1.22841×10-3T+3.33586×10-6T2-3.05677×10-9T3 |
| 网格数量/个 | 上峰值速度偏差/% | 计算成本/% |
|---|---|---|
| 791864 | 2.90 | 66.29 |
| 967032 | 2.28 | 51.86 |
| 1213056 | 0.13 | 35.05 |
| 1432448 | — | — |
表2 网格独立性验证结果
Table 2 Results of grid independence verification
| 网格数量/个 | 上峰值速度偏差/% | 计算成本/% |
|---|---|---|
| 791864 | 2.90 | 66.29 |
| 967032 | 2.28 | 51.86 |
| 1213056 | 0.13 | 35.05 |
| 1432448 | — | — |
| [1] | Gu C Y, Hu C B, Ma C L, et al. Development and characterization of solid lipid microparticles containing vitamin C for topical and cosmetic use[J]. European Journal of Lipid Science and Technology, 2016, 118(7): 1093-1103. |
| [2] | 陈展珠, 叶锦华, 王智彬, 等. 三维分形集成共轴流通道实现液滴高效生成[J]. 化工学报, 2024, 75(12): 4442-4452. |
| Chen Z Z, Ye J H, Wang Z B, et al. Efficient generation of droplets through three-dimensional fractal integrated coaxial flow channels[J]. CIESC Journal, 2024, 75(12): 4442-4452. | |
| [3] | 石盼, 颜肖潇, 王行政, 等. 一步法制备生物相容油核微胶囊及其可控释放[J]. 化工学报, 2021, 72(1): 619-627. |
| Shi P, Yan X X, Wang X Z, et al. One-step fabrication of biocompatible oil-core microcapsules with controlled release[J]. CIESC Journal, 2021, 72(1): 619-627. | |
| [4] | Kumar A, Kaur R, Kumar V, et al. New insights into water-in-oil-in-water (W/O/W) double emulsions: properties, fabrication, instability mechanism, and food applications[J]. Trends in Food Science & Technology, 2022, 128: 22-37. |
| [5] | 吉笑盈, 郑园, 李晓鹏, 等. 微流控可控制备液滴、颗粒和胶囊及其应用[J]. 化工学报, 2024, 75(4): 1455-1468. |
| Ji X Y, Zheng Y, Li X P, et al. Controlled preparation of droplets, particles and capsules by microfluidics and their applications[J]. CIESC Journal, 2024, 75(4): 1455-1468. | |
| [6] | Hanson J A, Chang C B, Graves S M, et al. Nanoscale double emulsions stabilized by single-component block copolypeptides[J]. Nature, 2008, 455(7209): 85-88. |
| [7] | Pan J H, Chen J P, Wang X J, et al. Pickering emulsion: from controllable fabrication to biomedical application[J]. Interdisciplinary Medicine, 2023, 1(3): e20230014. |
| [8] | Baroud C N, Robert de Saint Vincent M, Delville J P. An optical toolbox for total control of droplet microfluidics[J]. Lab on a Chip, 2007, 7(8): 1029-1033. |
| [9] | Mazutis L, Baret J C, Griffiths A D. A fast and efficient microfluidic system for highly selective one-to-one droplet fusion[J]. Lab on a Chip, 2009, 9(18): 2665-2672. |
| [10] | Sesen M, Alan T, Neild A. Microfluidic on-demand droplet merging using surface acoustic waves[J]. Lab on a Chip, 2014, 14(17): 3325-3333. |
| [36] | Chen X K, Xia Y, Zhang Z Y, et al. Hydrocarbon degradation by contact with anoxic water microdroplets[J]. Journal of the American Chemical Society, 2023, 145(39): 21538-21545. |
| [37] | Hsieh W D, Chen R H, Chen C W, et al. Micro-explosion of a water-in-hexadecane compound drop[J]. Journal of the Chinese Institute of Engineers, 2012, 35(5): 579-587. |
| [38] | Hadland P H, Balasubramaniam R, Wozniak G, et al. Thermocapillary migration of bubbles and drops at moderate to large Marangoni number and moderate Reynolds number in reduced gravity[J]. Experiments in Fluids, 1999, 26(3): 240-248. |
| [39] | Zhao J F, Zhang L, Li Z D, et al. Topological structure evolvement of flow and temperature fields in deformable drop Marangoni migration in microgravity[J]. International Journal of Heat and Mass Transfer, 2011, 54(21/22): 4655-4663. |
| [40] | Chen X P, Mandre S, Feng J J. Partial coalescence between a drop and a liquid-liquid interface[J]. Physics of Fluids, 2006, 18(5): 051705. |
| [41] | Chen X P, Mandre S, Feng J J. An experimental study of the coalescence between a drop and an interface in Newtonian and polymeric liquids[J]. Physics of Fluids, 2006, 18(9): 092103. |
| [42] | Scheele G F, Leng D E. An experimental study of factors which promote coalescence of two colliding drops suspended in water (Ⅰ)[J]. Chemical Engineering Science, 1971, 26(11): 1867-1879. |
| [11] | Liu K, Ding H J, Liu J, et al. Shape-controlled production of biodegradable calcium alginate gel microparticles using a novel microfluidic device[J]. Langmuir, 2006, 22(22): 9453-9457. |
| [12] | Shintaku H, Kuwabara T, Kawano S, et al. Micro cell encapsulation and its hydrogel-beads production using microfluidic device[J]. Microsystem Technologies, 2007, 13(8): 951-958. |
| [13] | Jia Y K, Ren Y K, Liu W Y, et al. Electrocoalescence of paired droplets encapsulated in double-emulsion drops[J]. Lab on a Chip, 2016, 16(22): 4313-4318. |
| [14] | Guan X W, Hou L K, Ren Y K, et al. A dual-core double emulsion platform for osmolarity-controlled microreactor triggered by coalescence of encapsulated droplets[J]. Biomicrofluidics, 2016, 10(3): 034111. |
| [15] | Hou L K, Ren Y K, Jia Y K, et al. Continuously electrotriggered core coalescence of double-emulsion drops for microreactions[J]. ACS Applied Materials & Interfaces, 2017, 9(14): 12282-12289. |
| [16] | Deng N N, Wang W, Ju X J, et al. Wetting-induced formation of controllable monodisperse multiple emulsions in microfluidics[J]. Lab on a Chip, 2013, 13(20): 4047-4052. |
| [17] | Bremond N, Thiam A R, Bibette J. Decompressing emulsion droplets favors coalescence[J]. Physical Review Letters, 2008, 100(2): 024501. |
| [18] | Tao Y, Liu W Y, Ge Z Y, et al. Numerical characterization of inter-core coalescence by AC dielectrophoresis in double-emulsion droplets[J]. Electrophoresis, 2022, 43(21/22): 2141-2155. |
| [19] | 宋粉红, 王伟, 陈奇成, 等. 电场作用下双液滴聚合特性[J]. 化工学报, 2021, 72(S1): 371-381. |
| Song F H, Wang W, Chen Q C, et al. Coalescence characteristics of the double droplets under electric field[J]. CIESC Journal, 2021, 72(S1): 371-381. | |
| [20] | Xie C Y, Meng S X, Xue L H, et al. Light and magnetic dual-responsive Pickering emulsion micro-reactors[J]. Langmuir, 2017, 33(49): 14139-14148. |
| [21] | Feng K, Gao N, Zhang W L, et al. Creation of nonspherical microparticles through osmosis-driven arrested coalescence of microfluidic emulsions[J]. Small, 2020, 16(9): e1903884. |
| [22] | 陈庆国, 宋春辉, 梁雯, 等. 非均匀电场下乳化油中液滴变形动力学行为[J]. 化工学报, 2015, 66(3): 955-964. |
| Chen Q G, Song C H, Liang W, et al. Kinetics behavior of water droplet deformation in emulsified oil subjected to non-uniform electric field[J]. CIESC Journal, 2015, 66(3): 955-964. | |
| [23] | Su H S, Wang Z B, Chen Y, et al. Numerical simulation on interface dynamics of core coalescence of double-emulsion droplets[J]. Industrial & Engineering Chemistry Research, 2020, 59(48): 21248-21260. |
| [24] | Cordero M L, Burnham D R, Baroud C N, et al. Thermocapillary manipulation of droplets using holographic beam shaping: microfluidic pin ball[J]. Applied Physics Letters, 2008, 93(3): 034107. |
| [25] | Robert de Saint Vincent M, Wunenburger R, Delville J P. Laser switching and sorting for high speed digital microfluidics[J]. Applied Physics Letters, 2008, 92(15): 154105. |
| [26] | Selva B, Miralles V, Cantat I, et al. Thermocapillary actuation by optimized resistor pattern: bubbles and droplets displacing, switching and trapping[J]. Lab on a Chip, 2010, 10(14): 1835-1840. |
| [27] | Bezuglyi B A, Ivanova N A. Creation, transportation, and coalescence of liquid drops by means of a light beam[J]. Fluid Dynamics, 2006, 41(2): 278-285. |
| [28] | Jiang P C, Chen R, Zhu X, et al. Light droplet levitation in relation to interface morphology and liquid property[J]. The Journal of Physical Chemistry Letters, 2022, 13(21): 4762-4767. |
| [29] | Chen X G, Hou L K, Yin Z Q, et al. NIR light-triggered core-coalescence of double-emulsion drops for micro-reactions[J]. Chemical Engineering Journal, 2023, 454: 140050. |
| [30] | Wang Z B, Chen R, Zhu X, et al. Control of the droplet generation by an infrared laser[J]. AIP Advances, 2018, 8: 015302. |
| [31] | Yang Y J, Wang Z B, Chen R, et al. Droplet migration and coalescence in a microchannel induced by the photothermal effect of a focused infrared laser[J]. Industrial & Engineering Chemistry Research, 2021, 60(4): 1912-1925. |
| [32] | Chen Z Z, Qin J Y, Wang Y L, et al. Diverse manipulations of double-emulsion droplets using photothermal effect of infrared laser[J]. Applied Thermal Engineering, 2025, 266: 125751. |
| [33] | Albadawi A, Donoghue D B, Robinson A J, et al. On the analysis of bubble growth and detachment at low capillary and Bond numbers using volume of fluid and level set methods[J]. Chemical Engineering Science, 2013, 90: 77-91. |
| [34] | Li S Z, Chen R, Wang H, et al. Numerical investigation of the moving liquid column coalescing with a droplet in triangular microchannels using CLSVOF method[J]. Science Bulletin, 2015, 60(22): 1911-1926. |
| [35] | Wang Z B, Li S Z, Chen R, et al. Numerical study on dynamic behaviors of the coalescence between the advancing liquid meniscus and multi-droplets in a microchannel using CLSVOF method[J]. Computers & Fluids, 2018, 170: 341-348. |
| [1] | 刘卓龙, 甘云华, 屈可扬, 陈宁光, 潘铭晖. 均匀电场对生物柴油小尺度射流扩散燃烧特性影响研究[J]. 化工学报, 2025, 76(9): 4800-4808. |
| [2] | 周航, 张斯婧, 刘剑, 张小松. 小通道内非共沸工质流动沸腾换热数值分析[J]. 化工学报, 2025, 76(8): 3864-3872. |
| [3] | 刘建海, 王磊, 鲁朝金, 白志山, 张平雨. 耦合电化学与多相流模型的电解槽性能研究[J]. 化工学报, 2025, 76(8): 3885-3893. |
| [4] | 常心泉, 张克学, 王军, 夏国栋. 自由分子区内不规则颗粒的热泳力计算[J]. 化工学报, 2025, 76(8): 3944-3953. |
| [5] | 马永丽, 安澍, 杨捷, 刘明言. 气液固流化床直接数值模拟研究进展[J]. 化工学报, 2025, 76(8): 3772-3788. |
| [6] | 陈曦, 王淑彦, 邵宝力, 丁诺, 谢磊. 基于颗粒动态恢复系数二阶矩模型的液固流化床数值模拟研究[J]. 化工学报, 2025, 76(7): 3246-3258. |
| [7] | 郭江悦, 常守金, 胡海涛. 水平管内甲醇流动冷凝数值模拟研究[J]. 化工学报, 2025, 76(6): 2580-2588. |
| [8] | 王令颁, 孙漪霏, 卜禹豪, 许振彬, 孙贤, 邵瀚锋, 孙长宇, 陈光进. 大尺度扇柱形反应釜内甲烷水合物降压开采规律研究[J]. 化工学报, 2025, 76(6): 2958-2973. |
| [9] | 刘润健, 林刚, 张玲, 徐栋, 李明, 韩路长. 考虑气泡表面变形影响的靠近-减薄过程耦合模型[J]. 化工学报, 2025, 76(4): 1504-1512. |
| [10] | 张静, 杨光, 菅爱博, 程思淼, 王绍哲, 龚斌. 基于水下凹壁面上双油滴撞壁-聚并过程分析[J]. 化工学报, 2025, 76(3): 1029-1039. |
| [11] | 张鑫源, 何呈祥, 李亚婷, 朱春英, 马友光, 付涛涛. 微通道内液液非均相传质的模拟和实验研究方法进展[J]. 化工学报, 2025, 76(2): 484-503. |
| [12] | 尚海洋, 姚军, 赵彦琳, 陈昇, 何萌. 不同相间作用下方管两相湍流直接数值模拟[J]. 化工学报, 2025, 76(11): 5730-5738. |
| [13] | 岳远贺, 赵微微, 侯林杰, 张勇, 饶中浩. 基于双喷口喷动单元的喷动床放大研究[J]. 化工学报, 2025, 76(11): 5664-5676. |
| [14] | 史博会, 刘光硕, 郭恩岐, 史潇航, 刘浩田, 吴海浩, 李晓平, 宋尚飞, 宫敬. 基于CFD-DEM的水基体系水合物流动聚集与沉积过程模拟研究[J]. 化工学报, 2025, 76(11): 5554-5573. |
| [15] | 李焱, 郑利军, 张恩勇, 王云飞. 深水海底管道软管内部流体渗透特性模型与试验研究[J]. 化工学报, 2024, 75(S1): 118-125. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号