化工学报 ›› 2025, Vol. 76 ›› Issue (11): 5664-5676.DOI: 10.11949/0438-1157.20250468
• 专栏:能源利用过程中的多相流与传热 • 上一篇
岳远贺1,2(
), 赵微微1,2, 侯林杰1,2, 张勇3(
), 饶中浩1,2(
)
收稿日期:2025-04-30
修回日期:2025-06-09
出版日期:2025-11-25
发布日期:2025-12-19
通讯作者:
张勇,饶中浩
作者简介:岳远贺(1991—),男,博士,副教授,yuanhe.yue@hebut.edu.cn
基金资助:
Yuanhe YUE1,2(
), Weiwei ZHAO1,2, Linjie HOU1,2, Yong ZHANG3(
), Zhonghao RAO1,2(
)
Received:2025-04-30
Revised:2025-06-09
Online:2025-11-25
Published:2025-12-19
Contact:
Yong ZHANG, Zhonghao RAO
摘要:
喷动床凭借其能在反应器尺度上实现颗粒稳定循环的特点,被广泛应用在储能颗粒制备等领域。然而,颗粒的循环运动会受到操作条件、容器尺寸等条件的影响,导致床层放大困难。研究思路在于摒弃垂直独立喷动的理念,将双喷口协同作用作为基本单元并开展喷动床放大设计。研究表明,在二维和三维矩形喷动床中,双喷口协同偏转喷动具备更高的气固混合效率与更宽的操作区间。二维喷动床内气固混合20 s后,双喷口比单喷口的温度下降同比提升了12%,且颗粒温度方差降低,展现出更强的均匀性。当双喷口流化床纵向扩展为四喷口时,极易出现腾涌状态。通过适度降低气体速度至1.75~2.0 m/s,四喷口喷动床可以实现多喷口独立垂直喷动,并具有优良的气固混合效果。本研究深入揭示了双喷口协同喷动单元在喷动床放大过程中的重要价值,为矩形喷动床的放大设计开辟了新路径。
中图分类号:
岳远贺, 赵微微, 侯林杰, 张勇, 饶中浩. 基于双喷口喷动单元的喷动床放大研究[J]. 化工学报, 2025, 76(11): 5664-5676.
Yuanhe YUE, Weiwei ZHAO, Linjie HOU, Yong ZHANG, Zhonghao RAO. Study on the scaling-up of spouted fluidized beds based on the dual-nozzle spouting unit[J]. CIESC Journal, 2025, 76(11): 5664-5676.
| 参数 | 数值 |
|---|---|
| 固相 | |
| 颗粒直径 | 2.5 mm |
| 颗粒密度 | 2526 kg/m3 |
| 固相温度 | 363.15 K |
| 恢复系数(p-p) | 0.97 |
| 恢复系数(p-w) | 0.97 |
| 颗粒床层高度 | 0.12 m |
| 气相 | |
| 气体密度 | 1.2 kg/m3 |
| 气体动力黏度 | 1.8 Pa·s |
| 流体温度 | 293.15 K |
| 压力 | 101325 Pa |
表1 主要模拟参数
Table 1 The main simulation parameters
| 参数 | 数值 |
|---|---|
| 固相 | |
| 颗粒直径 | 2.5 mm |
| 颗粒密度 | 2526 kg/m3 |
| 固相温度 | 363.15 K |
| 恢复系数(p-p) | 0.97 |
| 恢复系数(p-w) | 0.97 |
| 颗粒床层高度 | 0.12 m |
| 气相 | |
| 气体密度 | 1.2 kg/m3 |
| 气体动力黏度 | 1.8 Pa·s |
| 流体温度 | 293.15 K |
| 压力 | 101325 Pa |
| [1] | 肖力光, 李赫. 相变储能材料在建筑围护结构领域的应用及研究进展[J]. 化工新型材料, 2024, 52(4): 228-232. |
| Xiao L G, Li H. Application and research progress of phase change energy storage materials in building envelope structures[J]. New Chemical Materials, 2024, 52(4): 228-232. | |
| [2] | Akhtar A, Krepl V, Ivanova T. A combined overview of combustion, pyrolysis, and gasification of biomass[J]. Energy & Fuels, 2018, 32(7): 7294-7318. |
| [3] | da Silva C A M, Butzge J J, Nitz M, et al. Monitoring and control of coating and granulation processes in fluidized beds—a review[J]. Advanced Powder Technology, 2014, 25(1): 195-210. |
| [4] | Elordi G, Olazar M, Artetxe M, et al. Effect of the acidity of the HZSM-5 zeolite catalyst on the cracking of high density polyethylene in a conical spouted bed reactor[J]. Applied Catalysis A: General, 2012, 415: 89-95. |
| [5] | Yaman O, Kulah G, Koksal M. Surface-to-bed heat transfer for high-density particles in conical spouted and spout-fluid beds[J]. Particuology, 2019, 42: 35-47. |
| [6] | Al-Juwaya T, Ali N, Al-Dahhan M. Investigation of hydrodynamics of binary solids mixture spouted beds using radioactive particle tracking (RPT) technique[J]. Chemical Engineering Research and Design, 2019, 148: 21-44. |
| [7] | Larsen E, Moss S M, Skjelsbæk I. Gender Equality and Nation Branding in the Nordic Region[M]. London: Routledge, 2021. |
| [8] | Wang Z L, Lim C J, Grace J R. A comprehensive study of sawdust torrefaction in a dual-compartment slot-rectangular spouted bed reactor[J]. Energy, 2019, 189: 116306. |
| [9] | 李水清, 姚强, 赵香龙. 喷动床反应器气固流动模型的研究进展[J]. 化学反应工程与工艺, 2003, 19(3): 264-279. |
| Li S Q, Yao Q, Zhao X L. Review of models on gas-solid flow patterns in spouted bed reactor[J]. Chemical Reaction Engineering and Technology, 2003, 19(3): 264-279. | |
| [10] | Olazar M, San Jose M J, Aguayo A T, et al. Stable operation conditions for gas-solid contact regimes in conical spouted beds[J]. Industrial & Engineering Chemistry Research, 1992, 31(7): 1784-1792. |
| [11] | Olazar M, San José M J, Aguayo A T, et al. Pressure drop in conical spouted beds[J]. The Chemical Engineering Journal, 1993, 51(1): 53-60. |
| [12] | Olazar M, San Jose M J, Aguayo A T, et al. Design factors of conical spouted beds and jet spouted beds[J]. Industrial & Engineering Chemistry Research, 1993, 32(6): 1245-1250. |
| [13] | de Brito R C, Tellabide M, Atxutegi A, et al. Draft tube design based on a borescopic technique in conical spouted beds[J]. Advanced Powder Technology, 2021, 32(11): 4420-4431. |
| [14] | Rüdisüli M, Schildhauer T J, Biollaz S M A, et al. Scale-up of bubbling fluidized bed reactors: a review[J]. Powder Technology, 2012, 217: 21-38. |
| [15] | Altzibar H, Estiati I, Lopez G, et al. Fountain confined conical spouted beds[J]. Powder Technology, 2017, 312: 334-346. |
| [16] | Mujumdar A S. Spouted bed technology—a brief review[R/OL]. Drying'84, 1984. . |
| [17] | Qiu K Z, Hu C S, Yang S L, et al. Computational evaluation of depth effect on the hydrodynamics of slot-rectangular spouted bed[J]. Powder Technology, 2016, 287: 51-60. |
| [18] | Xiao F, Kobayashi N, Suami A, et al. Optimizing the surface modification of cohesive polyethylene powders in a vibrated plasma-spouted bed: exploring agglomerate size impact on coarser particle addition mechanism[J]. Advanced Powder Technology, 2023, 34(12): 104274. |
| [19] | Grace J R, Lim C J. Scaleup, slot-rectangular, and multiple spouting[M]//Spouted and Spout-Fluid Beds. Cambridge: Cambridge University Press, 2010: 283-296. |
| [20] | Che X X, Wu F, Ren H B, et al. Numerical study on the effect of longitudinal vortex generator on semi-dry desulfurization process in 3D spouted beds[J]. Advanced Powder Technology, 2023, 34(3): 103961. |
| [21] | Wu F, Che X X, Huang Z Y, et al. Numerical study on the gas-solid flow in a spouted bed installed with a controllable nozzle and a swirling flow generator[J]. ACS Omega, 2020, 5(2): 1014-1024. |
| [22] | Elsinger G, Oprins H, Cherman V, et al. Effects of nozzle pitch adaptation in micro-scale liquid jet impingement[J]. Fluids, 2024, 9(3): 69. |
| [23] | Yang S L, Wang H, Wei Y G, et al. Particle-scale characteristics of the three distinct regions in the multi-chamber slot-rectangular spouted bed[J]. Powder Technology, 2020, 360: 658-672. |
| [24] | van Buijtenen M S, van Dijk W J, Deen N G, et al. Numerical and experimental study on multiple-spout fluidized beds[J]. Chemical Engineering Science, 2011, 66(11): 2368-2376. |
| [25] | Yue Y H, Zhao W W, Sun X L, et al. A CFD-DEM study of a two-joint spouting flow pattern in a multiple rectangular spout fluidized bed[J]. Powder Technology, 2024, 435: 119351. |
| [26] | Yue Y H, Wang T Y, Sakai M, et al. Particle-scale study of spout deflection in a flat-bottomed spout fluidized bed[J]. Chemical Engineering Science, 2019, 205: 121-133. |
| [27] | Yue Y H, Wang S, Shen Y S. Gas-solid mixing and heat transfer performance in alternating spout deflection[J]. Chemical Engineering Science, 2021, 234: 116446. |
| [28] | Wang S, Luo K, Yang S L, et al. Parallel LES-DEM simulation of dense flows in fluidized beds[J]. Applied Thermal Engineering, 2017, 111: 1523-1535. |
| [29] | Tang T Q, He Y R, Tai T, et al. DEM numerical investigation of wet particle flow behaviors in multiple-spout fluidized beds[J]. Chemical Engineering Science, 2017, 172: 79-99. |
| [30] | Zhu H P, Zhou Z Y, Yang R Y, et al. Discrete particle simulation of particulate systems: theoretical developments[J]. Chemical Engineering Science, 2007, 62(13): 3378-3396. |
| [31] | Gidaspow D. Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions[M]. Cambridge, MA: Academic Press, 1994. |
| [32] | Li J, Mason D J. A computational investigation of transient heat transfer in pneumatic transport of granular particles[J]. Powder Technology, 2000, 112(3): 273-282. |
| [33] | Wang S, Luo K, Hu C S, et al. CFD-DEM simulation of heat transfer in fluidized beds: model verification, validation, and application[J]. Chemical Engineering Science, 2019, 197: 280-295. |
| [34] | Wang S, Luo K, Hu C S, et al. CFD-DEM study of the effect of cyclone arrangements on the gas-solid flow dynamics in the full-loop circulating fluidized bed[J]. Chemical Engineering Science, 2017, 172: 199-215. |
| [35] | Link J M, Cuypers L A, Deen N G, et al. Flow regimes in a spout-fluid bed: a combined experimental and simulation study[J]. Chemical Engineering Science, 2005, 60(13): 3425-3442. |
| [36] | Link J M, Deen N G, Kuipers J A M, et al. PEPT and discrete particle simulation study of spout-fluid bed regimes[J]. AIChE Journal, 2008, 54(5): 1189-1202. |
| [37] | Patil A V, Peters E A J F, Sutkar V S, et al. A study of heat transfer in fluidized beds using an integrated DIA/PIV/IR technique[J]. Chemical Engineering Journal, 2015, 259: 90-106. |
| [1] | 刘卓龙, 甘云华, 屈可扬, 陈宁光, 潘铭晖. 均匀电场对生物柴油小尺度射流扩散燃烧特性影响研究[J]. 化工学报, 2025, 76(9): 4800-4808. |
| [2] | 马永丽, 安澍, 杨捷, 刘明言. 气液固流化床直接数值模拟研究进展[J]. 化工学报, 2025, 76(8): 3772-3788. |
| [3] | 刘建海, 王磊, 鲁朝金, 白志山, 张平雨. 耦合电化学与多相流模型的电解槽性能研究[J]. 化工学报, 2025, 76(8): 3885-3893. |
| [4] | 常心泉, 张克学, 王军, 夏国栋. 自由分子区内不规则颗粒的热泳力计算[J]. 化工学报, 2025, 76(8): 3944-3953. |
| [5] | 周航, 张斯婧, 刘剑, 张小松. 小通道内非共沸工质流动沸腾换热数值分析[J]. 化工学报, 2025, 76(8): 3864-3872. |
| [6] | 陈曦, 王淑彦, 邵宝力, 丁诺, 谢磊. 基于颗粒动态恢复系数二阶矩模型的液固流化床数值模拟研究[J]. 化工学报, 2025, 76(7): 3246-3258. |
| [7] | 郭江悦, 常守金, 胡海涛. 水平管内甲醇流动冷凝数值模拟研究[J]. 化工学报, 2025, 76(6): 2580-2588. |
| [8] | 王令颁, 孙漪霏, 卜禹豪, 许振彬, 孙贤, 邵瀚锋, 孙长宇, 陈光进. 大尺度扇柱形反应釜内甲烷水合物降压开采规律研究[J]. 化工学报, 2025, 76(6): 2958-2973. |
| [9] | 张鑫源, 何呈祥, 李亚婷, 朱春英, 马友光, 付涛涛. 微通道内液液非均相传质的模拟和实验研究方法进展[J]. 化工学报, 2025, 76(2): 484-503. |
| [10] | 史博会, 刘光硕, 郭恩岐, 史潇航, 刘浩田, 吴海浩, 李晓平, 宋尚飞, 宫敬. 基于CFD-DEM的水基体系水合物流动聚集与沉积过程模拟研究[J]. 化工学报, 2025, 76(11): 5554-5573. |
| [11] | 李焱, 郑利军, 张恩勇, 王云飞. 深水海底管道软管内部流体渗透特性模型与试验研究[J]. 化工学报, 2024, 75(S1): 118-125. |
| [12] | 左磊, 王军锋, 高健, 王道睿. 电场调控生物柴油液滴燃烧行为[J]. 化工学报, 2024, 75(8): 2983-2990. |
| [13] | 曹佳蕾, 孙立岩, 曾德望, 尹凡, 高子翔, 肖睿. 双流化床化学链制氢反应器的数值模拟[J]. 化工学报, 2024, 75(8): 2865-2874. |
| [14] | 丁家琦, 刘海涛, 赵普, 朱香凝, 王晓放, 谢蓉. 煤炭超临界水制氢反应器内多相流场智能滚动预测研究[J]. 化工学报, 2024, 75(8): 2886-2896. |
| [15] | 金虎, 杨帆, 戴梦瑶. 基于格子Boltzmann方法的液滴在圆柱壁面上运动过程研究[J]. 化工学报, 2024, 75(8): 2897-2908. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号