| [1] |
赵贤. 革新研发理念缓解能源危机[J]. 节能与环保, 2017(3): 44-45.
|
|
Zhao X. Innovative R&D concepts to alleviate the energy crisiss[J]. Energy Conservation & Environmental Protection, 2017 (3): 44-45.
|
| [2] |
王淑樱. 某型号发动机的生物燃料燃烧特性研究[D]. 天津: 中国民航大学, 2018.
|
|
Wang S Y. Research on the combustion characteristics of biofuel for a certain type of engine[D]. Tianjin: Civil Aviation University of China, 2018.
|
| [3] |
杨飞. 某型生物航空煤油的基础特性研究[D]. 南京: 南京航空航天大学, 2019.
|
|
Yang F. Research on the basic characteristics of a certain type of bio-aviation kerosene[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019.
|
| [4] |
Yao M F, Wang H, Zheng Z Q, et al. Experimental study of n-butanol additive and multi-injection on HD diesel engine performance and emissions[J]. Fuel, 2010, 89(9): 2191-2201.
|
| [5] |
赵玉垒. 稀混合气浓度对正丁醇燃烧过程的影响[D]. 青岛: 青岛大学, 2011.
|
|
Zhao Y L. The influence of lean mixture concentration on the combustion process of n-butanol[D]. Qingdao: Qingdao University, 2011.
|
| [6] |
Lupandin V, Thamburaj R, Nikolayev A. Test results of the OGT2500 gas turbine engine running on alternative fuels: BioOil, ethanol, BioDiesel and crude oil[C]//ASME Turbo Expo 2005: Power for Land, Sea, and Air. 2005:421-426.
|
| [7] |
Rehman A, Phalke D R, Pandey R. Alternative fuel for gas turbine: esterified jatropha oil-diesel blend[J]. Renewable Energy, 2011, 36(10): 2635-2640.
|
| [8] |
朱重阳, 甘志文. 生物质组分对航空煤油基础燃烧特性的影响研究[J]. 可再生能源, 2017, 35(12): 1751-1758.
|
|
Zhu C Y, Gan Z W. Research on the influence of biomass components on the basic combustion characteristics of aviation kerosene[J]. Renewable Energy, 2017, 35(12): 1751-1758.
|
| [9] |
黄生洪, 徐胜利, 刘小勇. 煤油超燃冲压发动机两相流场数值研究煤油在超燃流场中的多步化学反应特征[J]. 推进技术, 2005, 26(2) :101-105.
|
|
Huang S H, Xu S L, Liu X Y. Numerical study on two-phase flow field of kerosene supersonic ramjet engine and characteristics of multi-step chemical reactions of kerosene in supersonic flow field[J]. Propulsion Technology, 2005, 26(2): 101-105.
|
| [10] |
刘建文, 熊生伟, 马雪松. 正癸烷燃烧详细反应机理的构建及简化[J]. 推进技术, 2012, 33(1) :64-68.
|
|
Liu J W, Xiong S W, Ma X S. Construction and simplification of the detailed reaction mechanism of n-decane combustion[J]. Journal of Propulsion Technology, 2012, 33(1): 64-68.
|
| [11] |
Wang T S. Thermophysics characterization of kerosene combustion[C]//34th Thermophysics Conference. Denver, CO, USA: AIAA, 2000: AIAA2000-2511.
|
| [12] |
Delfau J L, Bouhria M, Reuillon M, et al. Experimental and computational investigation of the structure of a sooting decane-O2-Ar flame[J]. Symposium (International) on Combustion, 1991, 23(1): 1567-1572.
|
| [13] |
Dagaut P, Reuillon M, Cathonnet M, et al. High pressure oxidation of liquid fuels from low to high temperature (3): n-Decane[J]. Combustion Science and Technology, 1994, 103(1):349-359.
|
| [14] |
Dagaut P, Reuillon M, Boettner J C, et al. Kerosene combustion at pressures up to 40 atm: experimental study and detailed chemical kinetic modeling [J]. Symposium (International) on Combustion, 1994, 25(1): 919-926.
|
| [15] |
Vijay Kumar M, Veeresh Babu A, Ravi Kumar P. The impacts on combustion, performance and emissions of biodiesel by using additives in direct injection diesel engine[J]. Alexandria Engineering Journal, 2018, 57(1): 509-516.
|
| [16] |
Cai L M, vom Lehn F, Pitsch H. Higher alcohol and ether biofuels for compression-ignition engine application: a review with emphasis on combustion kinetics[J]. Energy & Fuels, 2021, 35(3): 1890-1917.
|
| [17] |
Pelucchi M, Namysl S, Ranzi E, et al. Combustion of n-C3—C6 linear alcohols: an experimental and kinetic modeling study (part II): Speciation measurements in a jet-stirred reactor, ignition delay time measurements in a rapid compression machine, model validation, and kinetic analysis[J]. Energy & Fuels, 2020, 34(11): 14708-14725.
|
| [18] |
Tran L S, Herbinet O, Li Y Y, et al. Low-temperature gas-phase oxidation of diethyl ether: fuel reactivity and fuel-specific products[J]. Proceedings of the Combustion Institute, 2019, 37(1): 511-519.
|
| [19] |
Tran L S, Wullenkord J, Li Y Y, et al. Probing the low-temperature chemistry of di-n-butyl ether: detection of previously unobserved intermediates[J]. Combustion and Flame, 2019, 210: 9-24.
|
| [20] |
Liu J, Hu E J, Zeng W, et al. A new surrogate fuel for emulating the physical and chemical properties of RP-3 kerosene[J]. Fuel, 2020, 259: 116210.
|
| [21] |
Li A, Zhang Z, Cheng X G, et al. Development and validation of surrogates for RP-3 jet fuel based on chemical deconstruction methodology[J]. Fuel, 2020, 267: 116975.
|
| [22] |
Wu Z Y, Mao Y B, Raza M, et al. Surrogate fuels for RP-3 kerosene formulated by emulating molecular structures, functional groups, physical and chemical properties[J]. Combustion and Flame, 2019, 208: 388-401.
|
| [23] |
Deng H W, Zhang C B, Xu G Q, et al. Density measurements of endothermic hydrocarbon fuel at sub- and supercritical conditions[J]. Journal of Chemical & Engineering Data, 2011, 56(6): 2980-2986.
|
| [24] |
Deng H W, Zhang C B, Xu G Q, et al. Viscosity measurements of endothermic hydrocarbon fuel from (298 to 788) K under supercritical pressure conditions[J]. Journal of Chemical & Engineering Data, 2012, 57(2): 358-365.
|
| [25] |
Herbinet O, Pitz W J, Westbrook C K. Detailed chemical kinetic mechanism for the oxidation of biodiesel fuels blend surrogate[J]. Combustion and Flame, 2010, 157(5): 893-908.
|
| [26] |
Fan X F, Liu Z K, Yang J Z, et al. Pyrolysis of lignocellulosic biofuel di-n-butyl ether (DBE): flow reactor experiments and kinetic modeling[J]. Energy & Fuels, 2021, 35(17): 14077-14086.
|
| [27] |
Cheng Z J, Niu Q, Wang Z D, et al. Experimental and kinetic modeling studies of low-pressure premixed laminar 2-methylfuran flames[J]. Proceedings of the Combustion Institute, 2017, 36(1): 1295-1302.
|
| [28] |
Mao Y B, Yu L, Wu Z Y, et al. Experimental and kinetic modeling study of ignition characteristics of RP-3 kerosene over low-to-high temperature ranges in a heated rapid compression machine and a heated shock tube[J]. Combustion and Flame, 2019, 203: 157-169.
|
| [29] |
Zhang C H, Li B, Rao F, et al. A shock tube study of the autoignition characteristics of RP-3 jet fuel[J]. Proceedings of the Combustion Institute, 2015, 35(3): 3151-3158.
|
| [30] |
姚峰. 激波管的研发与RP-3煤油点火延迟特性研究[D]. 杭州: 浙江大学,2019.
|
|
Yao F. Research on the development of shock tube and the study on the delay characteristics of RP-3 kerosene ignition[D]. Hangzhou: Zhejiang University, 2019.
|