• •
收稿日期:2025-05-20
修回日期:2025-06-21
出版日期:2025-06-26
通讯作者:
何孝军
作者简介:何 军(1995—),男,博士研究生,junsshe@163.com
基金资助:
Jun HE(
), Huayu MEI, Jinghui ZHENG, Xiaojun HE(
)
Received:2025-05-20
Revised:2025-06-21
Online:2025-06-26
Contact:
Xiaojun HE
摘要:
煤沥青(CTP)具有含碳量高、廉价易得等优势,是制备碳材料的优质前驱体之一。然而,CTP直接热解会产生高度石墨化的软碳,导致低的储钾容量和动力学。在此,以四氢呋喃萃取后CTP和草酰氯为原料,氯化铝为催化剂,通过傅克酰基化反应合成了羰基化煤沥青(DCTP);然后,以DCTP为前驱体,氯化钠为模板,利用一步碳化法制备了煤沥青基片状碳材料(PCSs)。探究了碳化温度对PCSs的结构、化学组成及其储钾性能的影响。羰基的引入促使CTP中多环芳烃分子形成三维聚合物网络,阻止了CTP的熔融和有序重排,羰基氧的脱除调变了碳材料的微观结构。当碳化温度为800℃时,制得的PCS800具有扩大的碳层间距、丰富的缺陷和微孔结构。电化学测试结果表明,PCS800具有高的储钾容量(在0.05 A·g-1时容量为310.3 mAh·g-1)、好的倍率性能(在2 A·g-1时容量为132.8 mAh·g-1)和优异的循环稳定性(在2 A·g-1时1000次循环后容量保持率达90.2%,单个循环的容量损失仅为0.0098%)。这一工作为从煤化工副产物制备高性能钾离子电池用负极材料提供了一种可行的方法。
中图分类号:
何军, 梅华羽, 郑景辉, 何孝军. 羰基氧交联法制备沥青基片状碳负极材料及其储钾性能研究[J]. 化工学报, DOI: 10.11949/0438-1157.20250556.
Jun HE, Huayu MEI, Jinghui ZHENG, Xiaojun HE. Preparation of pitch-based carbon sheet anode by diketone oxygen-crosslink strategy and its potassium storage properties[J]. CIESC Journal, DOI: 10.11949/0438-1157.20250556.
图2 CTP、ECTP和DCTP的FT-IR光谱(a)、XRD图谱(b)、TG/DTG曲线(c)、XPS谱图(e)、C 1s (f)和O 1s (i)高分辨光谱
Fig. 2 FT-IR spectra (a), XRD patterns (b), TG/DTG curves (c), XPS spectra (e), C 1s (f) and O 1s (i) of CTP, ECTP and DCTP
| Samples | CPT | ECPT | DCPT | |
|---|---|---|---|---|
| C 1s (at.%) | 97.12 | 95.76 | 87.42 | |
| O 1s (at.%) | 2.88 | 4.24 | 12.58 | |
| C 1s (%) | C=C | 32.97 | 47.62 | 36.36 |
| C-C | 51.97 | 36.66 | 52.67 | |
| C-O | 3.83 | 4.48 | 5.77 | |
| O-C=O | 11.23 | 11.24 | 19.66 | |
| O 1s (%) | C=O | 12.75 | 20.62 | 30.84 |
| C-O | 44.31 | 46.09 | 25.04 | |
| COOH | 42.94 | 33.29 | 44.12 | |
表1 CTP、ECTP和DCTP中的C 1s和O 1s的元素含量和拟合峰面积占比
Table 1 Element Contents and fitted peak area ratio of C 1s and O 1s in CTP, ECTP, and DCTP
| Samples | CPT | ECPT | DCPT | |
|---|---|---|---|---|
| C 1s (at.%) | 97.12 | 95.76 | 87.42 | |
| O 1s (at.%) | 2.88 | 4.24 | 12.58 | |
| C 1s (%) | C=C | 32.97 | 47.62 | 36.36 |
| C-C | 51.97 | 36.66 | 52.67 | |
| C-O | 3.83 | 4.48 | 5.77 | |
| O-C=O | 11.23 | 11.24 | 19.66 | |
| O 1s (%) | C=O | 12.75 | 20.62 | 30.84 |
| C-O | 44.31 | 46.09 | 25.04 | |
| COOH | 42.94 | 33.29 | 44.12 | |
图3 FESEM图: PCS600 [(a)、(b)], PCS700 [(c)、(d)], PCS800 [(e)、(f)], PCS900 [(g)、(h)]和EPCS800 [(i)、(j)]. PCS800的FESEM图及其对应的EDS图(k)
Fig. 3 FESEM images of PCS600 [(a)、(b)], PCS700 [(c)、(d)], PCS800 [(e)、(f)], PCS900 [(g)、(h)], and EPCS800 [(i)、(j)]. PCS800 and the corresponding EDS mappings (k)
图4 PCS800的TEM图[(a)、(b)]和HR-TEM图(c);EPCS800的TEM图[(d)、(e)]和HR-TEM图(f)
Fig. 4 TEM [(a)、(b)] and HR-TEM (c) of PCS800; TEM [(d)、(e)] and HR-TEM (f) of PCS800
图5 PCS600、PCS700、PCS800、PCS900和EPCS800的FT-IR光谱(a)、Raman图谱(b)、XRD图谱(c)、Raman图谱拟合结果(d)和XRD图谱(002)峰拟合结果(e)
Fig. 5 FT-IR spectra (a), Raman spectra (b), XRD patterns (c), Raman spectra fitting results (d), and XRD patterns (002) peaks fitting results (e) of PCS600, PCS700, PCS800, PCS900, and EPCS800
图6 PCS600、PCS700、PCS800、PCS900和EPCS800的TG/DTG曲线(a)、N2吸脱附等温线(b)、孔径分布曲线(c)、XPS谱图(d)、C 1s (e)和O 1s (f)高分辨光谱
Fig. 6 TG/DTG curve (a), N2 adsorption/desorption isotherms (b), pore size distribution curve (c),XPS spectra (d), C 1s (e), and O 1s (f) of PCS600, PCS700, PCS800, PCS900, and EPCS800
| Samples | Dap (Å) | SBET (m2·g-1) | Smic (m2·g-1) | Vt (cm3·g-1) | Vmic (cm3·g-1) |
|---|---|---|---|---|---|
| PCS600 | 83.51 | 4.73 | 1.45 | 0.0099 | 0.00046 |
| PCS700 | 73.48 | 6.00 | 3.02 | 0.011 | 0.0015 |
| PCS800 | 28.54 | 22.41 | 17.93 | 0.016 | 0.0062 |
| PCS900 | 20.43 | 75.94 | 60.00 | 0.043 | 0.024 |
| EPCS800 | 102.26 | 3.45 | 1.95 | 0.0088 | 0.00078 |
表2 PCS600、PCS700、PCS800、PCS900和EPCS800的孔结构参数
Table 2 Pore structure parameters of PCS600, PCS700, PCS800, PCS900, and EPCS800
| Samples | Dap (Å) | SBET (m2·g-1) | Smic (m2·g-1) | Vt (cm3·g-1) | Vmic (cm3·g-1) |
|---|---|---|---|---|---|
| PCS600 | 83.51 | 4.73 | 1.45 | 0.0099 | 0.00046 |
| PCS700 | 73.48 | 6.00 | 3.02 | 0.011 | 0.0015 |
| PCS800 | 28.54 | 22.41 | 17.93 | 0.016 | 0.0062 |
| PCS900 | 20.43 | 75.94 | 60.00 | 0.043 | 0.024 |
| EPCS800 | 102.26 | 3.45 | 1.95 | 0.0088 | 0.00078 |
图7 样品电化学储钾性能:PCS800 (a)、PCS600 (b)、PCS700 (c)、PCS900 (d)和EPCS800 (e)在0.1 mV·s-1下的CV曲线;在0.05 A·g-1时的初始充放电曲线(f);在0.05 ~ 5 A·g-1下的倍率性能(g);在0.2 A·g-1下的循环寿命(h);样品在2 A·g-1下的循环寿命(初始3个循环为0.05 A·g-1下激活的过程)(i)
Fig. 7 Electrochemical potassium storage performance of the samples: CV curve of PCS800 (a), PCS600 (b), PCS700 (c), PCS900 (d) and EPCS800 (e) at 0.1 mV·s-1; the initial charge and discharge curve at 0.05 A·g-1 (f); rate performance at 0.05 ~ 5 A·g-1 (g); cycle life at 0.2 A·g-1 (h); cycle life at 2 A·g-1 (i) (initial 3 cycles meaning the activation process at 0.05 A·g-1)
| Carbon | ICE (%) | Rate performance (mAh·g-1@A·g-1) | Cycling performance | Ref. | |
|---|---|---|---|---|---|
| Low rate | High rate | ||||
| BC-6 h | 65 | 358@0.05 | 192@1 | 179 mAh·g-1 after 2000 cycles at 1 A·g-1 | [ |
| HHCC | 61 | 303@0.02 | 27@1 | / | [ |
| NC | 55.6 | 318.8@0.05 | 58.3@5 | 119 mAh·g-1 after 500 cycles at 1 A·g-1 | [ |
| VCA-5 | / | 258@0.028 | 145@0.56 | 173 mAh·g-1 after 300 cycles at 0.14 A·g-1 | [ |
| P-N-C-1000 | 36 | 191@0.1 | 60@3 | 181 mAh·g-1 after 2000 cycles at 1 A·g-1 | [ |
| FEG-CNC-180 | 46 | 312.3@0.1 | 175@2 | 220 mAh·g-1 after 1000 cycles at 1 A·g-1 | [ |
| NSC-700 | 26.4 | 380@0.05 | 155@2 | 275 mAh·g-1 after 200 cycles at 0.05 A·g-1 | [ |
| CJR-NS | 37 | 289@0.1 | 120@5 | 111 mAh·g-1 after 1000 cycles at 5 A·g-1 | [ |
| DCTP800 | 52 | 310@0.05 | 87.1@5 | 122 mAh·g-1 after 1000 cycles at 2 A·g-1 | This work |
表3 PCS800电极与文献报道电极性能的比较
Table 3 Comparison of performance of PCS800 electrode with that reported in literature
| Carbon | ICE (%) | Rate performance (mAh·g-1@A·g-1) | Cycling performance | Ref. | |
|---|---|---|---|---|---|
| Low rate | High rate | ||||
| BC-6 h | 65 | 358@0.05 | 192@1 | 179 mAh·g-1 after 2000 cycles at 1 A·g-1 | [ |
| HHCC | 61 | 303@0.02 | 27@1 | / | [ |
| NC | 55.6 | 318.8@0.05 | 58.3@5 | 119 mAh·g-1 after 500 cycles at 1 A·g-1 | [ |
| VCA-5 | / | 258@0.028 | 145@0.56 | 173 mAh·g-1 after 300 cycles at 0.14 A·g-1 | [ |
| P-N-C-1000 | 36 | 191@0.1 | 60@3 | 181 mAh·g-1 after 2000 cycles at 1 A·g-1 | [ |
| FEG-CNC-180 | 46 | 312.3@0.1 | 175@2 | 220 mAh·g-1 after 1000 cycles at 1 A·g-1 | [ |
| NSC-700 | 26.4 | 380@0.05 | 155@2 | 275 mAh·g-1 after 200 cycles at 0.05 A·g-1 | [ |
| CJR-NS | 37 | 289@0.1 | 120@5 | 111 mAh·g-1 after 1000 cycles at 5 A·g-1 | [ |
| DCTP800 | 52 | 310@0.05 | 87.1@5 | 122 mAh·g-1 after 1000 cycles at 2 A·g-1 | This work |
图8 PCS800在0.1–2 mV·s-1范围内的CV曲线(a);PCS600 (b)、PCS700 (c)、PCS800 (d)、PCS900 (e)和EPCS800 (f)电极的log(i)与log(v)的线性关系;PCS600 (g)、PCS700 (h)、PCS800 (i)、PCS900 (j)和EPCS800 (k)在2 mV·s-1时电容和扩散过程贡献;电极的电容和扩散过程的贡献(l)
Fig. 8 CV curve of PCS800 in the range of 0.1–2 mV·s-1 (a); Linear relationship between log(i) vs. log(v) of PCS600 (b), PCS700 (c), PCS800 (d), PCS900 (e), and EPCS800 (f) electrode; Capacitance and diffusion control contributions of PCS600 (g), PCS700 (h), PCS800 (i), PCS900 (j), and EPCS800 (k) at 2 mV·s-1; The contribution of the capacitance and diffusion process of the electrodes (l)
图10 EXTP和DCTP衍生碳材料结构演变机制及其作用储钾能力示意图
Fig. 10 Schematic diagram of the structural evolution mechanism of ECTP and DCTP-derived carbon materials and their effects on potassium storage capacity
| 1 | Chen B C, Qi Z J, Chen B, et al. Room–temperature salt template synthesis of nitrogen–doped 3D porous carbon for fast metal–ion storage[J]. Angewandte Chemie International Edition, 2024, 63(1): e202316116. |
| 2 | Li E Z, Wang M S, Xu W, et al. VS2/Bi2S3 spring–type heterointerfaces hollow microspheres with spatial confinement and vacancy defects for fast–charging and ampere–hour scale pouch sodium–ion hybrid capacitors[J]. Advanced Energy Materials, 2025, 15(18): 2405674. |
| 3 | Yu L G, Chen X, Yao N, et al. Advanced carbon as emerging energy materials in lithium batteries: a theoretical perspective[J]. InfoMat, 2025, 7(5): e12653. |
| 4 | Lian X Y, Xu L, Ju Z J, et al. An electric double layer regulator empowers a robust solid–electrolyte interphase for potassium metal batteries[J]. Energy & Environmental Science, 2025, 18(1): 322–333. |
| 5 | Dhir S, Cattermull J, Jagger B, et al. Characterisation and modelling of potassium–ion batteries[J]. Nature Communications, 2024, 15(1): 7580. |
| 6 | Meyer L C, Thiagarajan A K, Koposov A, et al. Unravelling the mechanism of potassium–ion storage into graphite through electrolyte engineering[J]. Energy Storage Materials, 2025, 75: 104021. |
| 7 | Lin T C, Yang Y C, Tuan H Y. Optimized K+ deposition dynamics via potassiphilic porous interconnected mediators coordinated by single–atom iron for dendrite–free potassium metal batteries[J]. Advanced Science, 2025, 12(8): 2413804. |
| 8 | Jung S, Min J, Choi H, et al. Role of mesoporosity in hard carbon anodes for high–energy and stable potassium–ion storage[J]. Small, 2025, 21(9): 2410232. |
| 9 | Iqbal S, Wang L, Kong Z, et al. Bimetallic sulfide hollow nanocubes heterostructure promotes dual coupling of conversion and alloying/dealloying reactions to achieve durable potassium–ion battery anode[J]. Small, 2024, 20(45): 2404194. |
| 10 | Zhu W L, Lan P P, Tang T J, et al. Crystalline–topologies engineering of bio–spore–derived hard carbon for efficient low–potential potassium ion storage[J]. Chemical Engineering Journal, 2024, 491: 151841. |
| 11 | Ge J Y, Huang M, Li C Z, et al. The charge self–regulation effect induced by microcrystalline–amorphous heterointerface network toward fast charging sodium ion batteries[J]. Advanced Energy Materials, 2025, 15(18): 2405288. |
| 12 | Kim H C, Kim H, Moon S O, et al. Carbon–based materials for potassium–ion battery anodes: storage mechanisms and engineering strategies[J]. Journal of Energy Chemistry, 2025, 105: 764–796. |
| 13 | Lim C, Choi G B, Ha S, et al. Fluorination swing reaction derived porous carbon for effective potassium ion battery anode material[J]. Carbon, 2025, 234: 120007. |
| 14 | Jiang M C, Sun N, Li T Y, et al. Revealing the charge storage mechanism in porous carbon to achieve efficient K ion storage[J]. Small, 2024, 20(32): 2401478. |
| 15 | Wu J R, Yang T, Song Y, et al. Preparation of disordered carbon for alkali metal–ion (lithium, sodium, and potassium) batteries by pitch molecular modification: a review[J]. Carbon, 2024, 221: 118902. |
| 16 | Wang L, Xu Z, Lin P, et al. Oxygen–crosslinker effect on the electrochemical characteristics of asphalt–based hard carbon anodes for sodium–ion batteries[J]. Advanced Energy Materials, 2025, 15(7): 15(7): 2403084. |
| 17 | Sun Z, Chen Y, Geng C, et al. Oxygen–driven bulk defect engineering in carbon to reduce voltage hysteresis for fast potassium storage at low voltage[J]. Applied Catalysis B: Environmental, 2024, 343: 123473. |
| 18 | Qin M, Chen C, Zhang B H, et al. Ultrahigh pyridinic/pyrrolic N enabling N/S co–doped holey graphene with accelerated kinetics for alkali‐ion batteries[J]. Advanced Materials, 2024, 36(45): 2407570. |
| 19 | Jiang Y, Xiao N, Song X D, et al. Coal tar pitch derived sp2 configuration–dominated vacancy–rich carbon with expand interlayer spacing for low–voltage, durable, and fast potassium storage[J]. Advanced Functional Materials, 2024, 34(26): 2316207. |
| 20 | He J, Qian H R, Peng G D, et al. N/F/S co-doped 3D interconnected carbon nanosheets with well–developed pores and interlayer spacing for high–performance potassium ion batteries[J]. Journal of Materials Science & Technology, 2025, 230: 319–329. |
| 21 | Wang Y, Zeng J J, Wang Y J, et al. Biomass–derived carbon with large interlayer spacing for anode of potassium ion batteries[J]. Advanced Materials, 2024, 36(52): 2410132. |
| 22 | Wang B, Li Y N, Yuan F, et al. Conductive layer coupled mesoporous hard carbon enabling high rate and initial coulombic efficiency for potassium ion battery[J]. Chemical Engineering Journal, 2024, 494: 153081. |
| 23 | Shi X D, Zhou C C, Gao Y X, et al. Pore structure and oxygen content design of amorphous carbon toward a durable anode for potassium/sodium–ion batteries[J]. Carbon Energy, 2024, 6(9): e534. |
| 24 | Rützler A, Büttner J, Oechsler J, et al. Mesoporous N–doped carbon nanospheres as anode material for sodium ion batteries with high rate capability and superior power densities[J]. Advanced Functional Materials, 2024, 34(41): 2401188. |
| 25 | Zhou Y Q, Wang Y L, Fu C Y, et al. Tailoring pseudo–graphitic domain by molybdenum modification to boost sodium storage capacity and durability for hard carbon[J]. Small, 2024, 20(48): 2405921. |
| 26 | Wang J L, Huang Z J, Zhang W, et al. Balancing graphitic nanodomains and heteroatom doping in hard carbons toward high capacity and durable potassium–ion battery anodes[J]. Advanced Functional Materials, 2024, 34(51): 2409937. |
| 27 | Zhang Y M, Wang G Y, Yue P, et al. Construction of low–softening–point coal pitch derived carbon nanofiber films as self–standing anodes toward sodium dual–ion batteries[J]. Advanced Functional Materials, 2025, 35(6): 2414761. |
| 28 | Xiao B S, Sun Z F, Zhang H H, et al. Enabling highly–efficient and stable potassium–ion storage by exposing atomic–dispersed super-coordinated antimony O2Sb1N4 sites on N–doped carbon nanosheets[J]. Energy & Environmental Science, 2023, 16(5): 2153–2166. |
| 29 | Yang W W, Mo Y, Zhou W, et al. Oxidation–induced molecular structural transformations in pitches with different softening points toward high performance sodium storage[J]. Advanced Functional Materials, 2025: 2509129. |
| 30 | Zhou W, Wang D, Mo Y, et al. Tuning surface reactivity towards high–performance hard carbon in Li/Na/K–ion batteries[J]. Journal of Energy Chemistry, 2025, 103: 27–36. |
| 31 | Yao J J, Liu C, Zhu Y M, et al. Needle coke anodes for potassium–ion batteries: storage mechanism and interfacial evolution in soft carbon[J]. Carbon, 2024, 221: 118937. |
| 32 | Wang J, Xu Z, Eloi J C, et al. Ice–templated, sustainable carbon aerogels with hierarchically tailored channels for sodium– and potassium–ion batteries[J]. Advanced Functional Materials, 2022, 32(16): 2110862. |
| 33 | Lee J S, Kitchamsetti N, Cho J S. Hierarchical porous nanofibers comprising N–doped graphitic C and ZIF–8 derived hollow N–doped C nanocages for long–life K–ion battery anodes[J]. Chemical Engineering Journal, 2024, 487: 150465. |
| 34 | Wang L N, Zhu S, Huang Z H, et al. Rapid and up–scalable flash fabrication of graphitic carbon nanocages for robust potassium storage[J]. Advanced Functional Materials, 2024, 34(32): 2401548. |
| 35 | Qi J Q, Zhang C C, Huang M Y, et al. Defect engineering of porous carbon with high N/S doping for potassium ion storage[J]. Applied Surface Science, 2024, 657: 159771. |
| 36 | Zhu Z Y, Men Y L, Zhang W J, et al. Revisiting the enhancement mechanism of electrochemical performance of functional atom–doped hard carbon in potassium–ion batteries[J]. SusMat, 2025: e70017. |
| 37 | Zhang W, Sun Y H, Yang J W, et al. Layered bismuth selenide with a kinetics–enhanced iodine doping strategy toward high–performance aqueous potassium–ion storage[J]. Advanced Functional Materials, 2024, 34(52): 2411055. |
| 38 | Jiang J M, Chen Z Y, Chen Y X, et al. Engineering local graphitic domains to balance defect active site and electronic conduction ability in coal–derived carbon anode for superior potassium ions storage[J]. Advanced Functional Materials, 2024, 34(37): 2402416. |
| 39 | Ma C R, Tang X, Ben H X, et al. Promoting reaction kinetics and boosting sodium storage capability via constructing stable heterostructures for sodium–ion batteries[J]. Advanced Functional Materials, 2025, 35(2): 2412879. |
| 40 | Yang Z J, Liu X H, Ma X T, et al. Efficient preparation of biomass–based ultra–thin 2D porous carbon materials by in situ template–activation and its application in sodium ion capacitors[J]. Advanced Functional Materials, 2024, 34(22): 2310717. |
| 41 | Wang L Y, Ma C, Yang J N, et al. Organometallic polymer constructed by active Fe–C12N8 centers for boosting sodium–ion storage[J]. Angewandte Chemie International Edition, 2025, 64(1): e202413452. |
| 42 | Wang X Y, Yang L, Liang H Y, et al. Internal space modulation of yolk–shell FeSe2@carbon anode with peanut–shaped morphology enabling ultra–stable and fast potassium–ion storage[J]. Small, 2024, 20(49): 2406577. |
| 43 | Xiong S S, Wu Q, Gao Y, et al. In situ chemical modulation of graphitization degree of carbon fibers and its potassium storage mechanism[J]. Advanced Science, 2024, 11(23): 2401292. |
| [1] | 陆艳秋, 狄扬, 石文博, 殷聪聪, 汪勇. 基于新型有机多孔聚合物的智能响应膜研究进展[J]. 化工学报, 2025, 76(5): 2101-2118. |
| [2] | 李紫鹃, 谭晓艳, 吴永盛, 杨陈怡, 陈红, 毕小刚, 刘捷, 喻发全. 分子模拟研究三维扭曲催化芳烃-降冰片烯环化聚合物膜的CO2/N2分离机理[J]. 化工学报, 2025, 76(5): 2348-2357. |
| [3] | 李家顺, 李旺, 秦祖赠, 苏通明, 谢新玲, 纪红兵. 聚酰亚胺增强木质纤维素纳米纤丝气凝胶制备及其油水分离性能研究[J]. 化工学报, 2025, 76(5): 2169-2185. |
| [4] | 高冰冰, 许诺, 白云翔, 张春芳, 杨永强, 董亮亮. 氦气分离聚合物膜[J]. 化工学报, 2025, 76(5): 2119-2135. |
| [5] | 郭明钢, 杨晓航, 代岩, 米盼盼, 马世鑫, 贺高红, 肖武, 崔福军. 贫氦管输天然气提氦多元化产品耦合工艺优化设计[J]. 化工学报, 2025, 76(5): 2251-2261. |
| [6] | 李坤, 黄锐, 丛君, 马海涛, 常龙娇, 罗绍华. NCM622正极材料结构形态和储锂特性的同步演变[J]. 化工学报, 2025, 76(4): 1831-1840. |
| [7] | 吴迪, 刘世朋, 王文伟, 姜久春, 杨晓光. 机械压力对锂金属电池性能影响的研究进展[J]. 化工学报, 2025, 76(4): 1422-1431. |
| [8] | 林纬, 杜建, 姚晨, 朱家豪, 汪威, 郑小涛, 徐建民, 喻九阳. 电化学水软化过程中离子输运与成核机理研究[J]. 化工学报, 2025, 76(4): 1788-1799. |
| [9] | 朱峰, 赵跃, 马凤翔, 刘伟. 改性UIO-66对SF6/N2混合气体及其分解产物的吸附特性[J]. 化工学报, 2025, 76(4): 1604-1616. |
| [10] | 张忠州, 李怡霏, 陈双, 强军锋, 刘育红. 环氧基倍半硅氧烷修饰的联苯酚醛改性热塑性酚醛树脂性能[J]. 化工学报, 2025, 76(4): 1809-1819. |
| [11] | 马韶阳, 徐涵卓, 张亮亮, 孙宝昌, 邹海魁, 罗勇, 初广文. 液-液非均相反应与传递过程强化方法研究进展[J]. 化工学报, 2025, 76(4): 1391-1403. |
| [12] | 杨猛, 丁晓倩, 余涛, 刘畅, 汤成龙, 黄佐华. 甲烷/氧化亚氮绿色推进剂自着火特性实验及动力学[J]. 化工学报, 2025, 76(3): 1221-1229. |
| [13] | 徐芳, 张锐, 崔达, 王擎. ReaxFF-MD揭示木质素热解反应机制的分子动力学研究[J]. 化工学报, 2025, 76(3): 1253-1263. |
| [14] | 马钟琛, 魏子杰, 朱明涛, 叶恒棣, 郭学益, 谭磊. 一步氧化法制备锰酸锂正极材料用电池级四氧化三锰[J]. 化工学报, 2025, 76(3): 1363-1374. |
| [15] | 李远华, 凌思棋, 封科军, 冯颖, 郭于菁, 谢世桓. 基于cMOFs的固定化脂肪酶微反应器的构筑及其扁桃酸催化应用[J]. 化工学报, 2025, 76(3): 1170-1179. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号