化工学报

• •    

PEM电解制氢热管理建模及解耦控制设计与优化

梁丹曦1,2(), 俎焱敏2, 宋洁1,2, 柯绍杰2, 徐桂芝1,2, 侯坤2, 梁立晓2, 赵子泰2, 张永生1()   

  1. 1.华北电力大学能源动力与机械工程学院,北京 102206
    2.中国电力科学研究院有限公司,北京 100192
  • 收稿日期:2025-08-20 修回日期:2025-12-09 出版日期:2025-12-10
  • 通讯作者: 张永生
  • 作者简介:梁丹曦(1992—),女,博士研究生,高级工程师,liangdanxi@sina.com
  • 基金资助:
    国家电网有限公司科技资助项目(5230HQ25000W-004-ZN)

Thermal management modeling and decoupling control design and optimization for PEM electrolytic hydrogen production system

Danxi LIANG1,2(), Yanmin ZU2, Jie Song1,2, Shaojie KE2, Guizhi XU1,2, Kun HOU2, Lixiao LIANG2, Zitai ZHAO2, Yongsheng ZHANG1()   

  1. 1.School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
    2.China Electric Power Research Institute Co. , Ltd. , Beijing 100192, China
  • Received:2025-08-20 Revised:2025-12-09 Online:2025-12-10
  • Contact: Yongsheng ZHANG

摘要:

质子交换膜(PEM)电解制氢具有效率高、响应快、电流密度高、可调范围广的优点,是适应可再生能源波动制氢的重要技术。温度控制是直接影响PEM电解制氢耐久性、输出性能及可靠运行的关键因素。为实现电解制氢温度和温差的快速精确控制,建立了面向控制的PEM电解制氢系统时滞数学模型并进行线性化和频域模型转化,针对电解槽温度和温差控制强耦合、动态响应慢的问题,提出了基于前馈解耦的自适应模糊PID优化控制策略,并基于100kW电解制氢装置完成了系统模型验证和控制策略仿真对比分析。结果表明,所提控制策略在波动工况下能使电解制氢温度和温差保持稳定,温度/温差调节时间分别加快65.75s与66.5s,并且具备较强的抗干扰能力,最大偏差在±0.5℃内。

关键词: 制氢, 模型, 控制, 前馈控制, 模糊控制

Abstract:

Proton Exchange Membrane (PEM) electrolysis for hydrogen production, recognized for its high efficiency, rapid response, elevated current density, and wide adjustable range, has emerged as a pivotal technology adapting to the fluctuations of renewable energy. Temperature control is a critical factor directly influencing core component durability, operational states, and system performance. To achieve rapid and precise control of electrolytic stack temperature and temperature difference, this study establishes a control-oriented time-delay mathematical model for PEM electrolysis systems, subsequently linearized and converted into frequency-domain representations. Addressing challenges including strong coupling between temperature and temperature difference control, significant fluctuations, and sluggish dynamic response, an adaptive fuzzy PID optimization control strategy based on feed-forward decoupling is proposed. System model validation and comparative simulation analysis of control strategies have been completed utilizing 100kW PEM electrolysis facility. The results demonstrate that the proposed control strategy can effectively maintain stable hydrogen production temperature and temperature difference under fluctuating operating conditions. Specifically, the temperature and temperature difference adjustment times are reduced by 65.75 s and 66.5 s, respectively, while exhibiting strong anti-interference capability, with a maximum deviation confined within ±0.5°C.

Key words: hydrogen production, model, control, feed-forward control, fuzzy control

中图分类号: