化工学报

• •    

Li+掺杂诱导缺陷工程增强钙钛矿型高熵氧化物储锂性能

韦正兵1(), 徐世彪1, 潘美伊1, 尹飞龙1, 韦丹1, 贾洋刚1, 檀杰1, 冒爱琴1,2()   

  1. 1.安徽工业大学材料科学与工程学院 先进陶瓷研究中心 安徽 马鞍山 243032
    2.安徽工业大学,氢电高效转化与固态存储安徽省重点实验室,安徽 马鞍山 243032
  • 收稿日期:2025-10-16 修回日期:2025-12-03 出版日期:2025-12-26
  • 通讯作者: 冒爱琴
  • 作者简介:韦正兵(2001—),男,硕士研究生,18175312236@163.com
  • 基金资助:
    安徽省高校自然科学研究重点项目(2023AH051104);氢电高效转化与固态存储安徽省重点实验室开放基金(ECSSHE2024KF05)

Li+ doping induced defect engineering for enhanced lithium storage performance in perovskite-type high-entropy oxides

Zhengbing Wei1(), Shibiao Xu1, Meiyi Pan1, Feilong Yin1, Dan Wei1, Yanggang Jia1, Jie Tan1, Aiqin Mao1,2()   

  1. 1.School of Materials Science and Engineering, Anhui University of Technology, Ma’anshan
    2.Advanced Ceramics Research Center, School of Materials Science and Engineering, Anhui University of Technology, Ma’anshan
  • Received:2025-10-16 Revised:2025-12-03 Online:2025-12-26
  • Contact: Aiqin Mao

摘要:

为解决高熵氧化物(HEOs)在储能领域面临的本征电导率低、锂离子传输动力学缓慢等问题,本研究采用溶液燃烧法制备了不同 Li⁺掺杂量的钙钛矿型La (CoCrFeMnNiLix)₁/(5+x) O3(x=0、0.2、0.4、0.6)HEOs负极材料,通过调控晶格畸变与氧空位等本征缺陷,实现储锂性能的显著提升。电化学测试表明,Li⁺掺杂可有效优化材料的电化学性能,其中Li0.4电极展示了卓越的倍率性能和循环稳定性,在 200 mA g-1 电流密度下循环 150 圈后放电比容量达 549.1 mAh g-1,较未掺杂提升55.3%;1000 mA g-1 下循环 500 圈,仍保持 503.6 mAh g-1的可逆比容量(未掺杂样品为440 mAh g-1)。其优异性能可归因于晶格畸变与高浓度氧空位的耦合调控作用,一方面优化电子/离子传输路径,增加反应活性位点;另一方面显著提升锂离子扩散速率与表面赝电容贡献率,缓解了材料储锂过程中的动力学限制。

关键词: 钙钛矿型高熵氧化物, 溶液燃烧法, 电化学, Li+掺杂, 负极材料

Abstract:

To address the intrinsic challenges of high-entropy oxides (HEOs) in energy storage applications, such as low intrinsic electrical conductivity and sluggish lithium ion transport kinetics, this study fabricated perovskite-type La(CoCrFeMnNiLix)1/(5+x)O3 (x = 0, 0.2, 0.4, 0.6) HEO anode materials with varying Li+ doping contents via a solution combustion method. By regulating intrinsic defects including lattice distortion and oxygen vacancies, a significant enhancement in lithium storage performance was achieved. Electrochemical characterizations demonstrate that Li+ doping effectively optimizes the electrochemical properties of the materials. Specifically, the Li0.4 electrode exhibits outstanding rate capability and cyclic stability: it delivers a discharge specific capacity of 549.1 mAh g-1 after 150 cycles at a current density of 200 mA g-1, representing a 55.3% improvement compared to the undoped sample. Even at a high current density of 1000 mA g-1, a reversible specific capacity of 503.6 mAh g-1 is retained after 500 cycles (vs. 440 mAh g-1 for the undoped sample). The excellent performance is attributed to the synergistic regulation of lattice distortion and high-concentration oxygen vacancies. On one hand, this regulation optimizes electron/ion transport pathways and increases active reaction sites; on the other hand, it significantly enhances lithium ion diffusion kinetics and the contribution of surface pseudocapacitance, thereby alleviating the kinetic limitations during the lithium storage process.

Key words: Perovskite-type high-entropy oxides, solution combustion synthesis, electrochemistry, Li+ doping, anode materials

中图分类号: