| [11] |
刘小杰, 张英, 刘洋, 等. 锂离子电池热管理系统综述[J]. 电池, 2022, 52(2): 208-212.
|
|
Liu X J, Zhang Y, Liu Y, et al. A Review on thermal management system for Li-ion battery[J]. Battery Bimonthly, 2022, 52(2): 208-212.
|
| [12] |
王明悦, 林家源, 刘新华, 等. 基于蛇形通道的电池组液冷方案设计与优化[J]. 北京航空航天大学学报, 2022, 48(1): 166-173.
|
|
Wang M Y, Lin J Y, Liu X H, et al. Design and optimization of battery pack liquid cooling scheme based on serpentine channel[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(1): 166-173.
|
| [13] |
Fu Z A, Zuo W, Li Q Q, et al. Performance enhancement studies on the liquid cooling plate fully filled with porous medium for thermal management of lithium-ion battery pack[J]. Journal of Energy Storage, 2025, 116: 116072.
|
| [14] |
陈岳浩, 陈莎, 陈慧兰, 等. 储能电池组浸没式液冷系统冷却性能模拟研究[J]. 储能科学与技术, 2025, 14(2): 648-658.
|
|
Chen Y H, Chen S, Chen H L, et al. Simulation study on cooling performance of immersion liquid cooling systems for energy-storage battery packs[J]. Energy Storage Science and Technology, 2025, 14(2): 648-658.
|
| [15] |
Qin Q, Luo Z H, Luk P C. Battery thermal management for microchannel cooling system with scanning flow method[J]. IEEE Transactions on Transportation Electrification, 2025, 11(1): 2840-2850.
|
| [16] |
Larrañaga-Ezeiza M, Vertiz G, Arroiabe P F, et al. A novel direct liquid cooling strategy for electric vehicles focused on pouch type battery cells[J]. Applied Thermal Engineering, 2022, 216: 118869.
|
| [17] |
Satyanarayana G, Ruben Sudhakar D, Muthya Goud V, et al. Experimental investigation and comparative analysis of immersion cooling of lithium-ion batteries using mineral and therminol oil[J]. Applied Thermal Engineering, 2023, 225: 120187.
|
| [18] |
Lai C G, Shan S M, Feng S, et al. Numerical investigations on heat transfer enhancement and energy flow distribution for interlayer battery thermal management system using Tesla-valve mini-channel cooling[J]. Energy Conversion and Management, 2023, 280: 116812.
|
| [19] |
Zuo W, Zhang Y T, E J Q, et al. Performance comparison between single S-channel and double S-channel cold plate for thermal management of a prismatic LiFePO4 battery[J]. Renewable Energy, 2022, 192: 46-57.
|
| [20] |
Tong B, Shi J Y, Cao M W, et al. Comprehensive comparison study on battery thermal management modules with indirect and direct liquid cooling[J]. Applied Thermal Engineering, 2025, 268: 125945.
|
| [21] |
Sui Z G, Lin H S, Sun Q, et al. Multi-objective optimization of efficient liquid cooling-based battery thermal management system using hybrid manifold channels[J]. Applied Energy, 2024, 371: 123766.
|
| [22] |
Yousefi E, Talele V, Morali U, et al. Liquid immersion cooling with enhanced Al2O3 nanofluid for large-format prismatic battery pack: numerical and statistical investigation[J]. Journal of Thermal Analysis and Calorimetry, 2025, 150(5): 3489-3507.
|
| [23] |
Liao G L, Wang W D, Zhang F, et al. Thermal performance of lithium-ion battery thermal management system based on nanofluid[J]. Applied Thermal Engineering, 2022, 216: 118997.
|
| [24] |
Jiang Y, Wang X M, Mahmoud M Z, et al. A study of nanoparticle shape in water/alumina/boehmite nanofluid flow in the thermal management of a lithium-ion battery under the presence of phase-change materials[J]. Journal of Power Sources, 2022, 539: 231522.
|
| [25] |
陶琦. 基于纳米流体冷却介质的燃料电池汽车驱动系统散热性能研究[D]. 武汉: 武汉理工大学, 2022.
|
|
Tao Q. Research on heat dissipation performance of driving system inside fuel cell vehicle by ysing nanofluids as coolant[D]. Wuhan: Wuhan University of Technology, 2022.
|
| [26] |
Kim H J, Bang I C, Onoe J. Characteristic stability of bare Au-water nanofluids fabricated by pulsed laser ablation in liquids[J]. Optics and Lasers in Engineering, 2009, 47(5): 532-538.
|
| [27] |
Haddad Z, Abid C, Oztop H F, et al. A review on how the researchers prepare their nanofluids[J]. International Journal of Thermal Sciences, 2014, 76: 168-189.
|
| [28] |
Yu W, Xie H Q. A review on nanofluids: preparation, stability mechanisms, and applications[J]. Journal of Nanomaterials, 2012, 2012: 435873.
|
| [29] |
Sun C Z, Bai B F, Lu W Q, et al. Shear-rate dependent effective thermal conductivity of H2O+SiO2 nanofluids[J]. Physics of Fluids, 2013, 25(5): 052002.
|
| [30] |
Shu Q, Kneer R, Rohlfs W. Influence of high shear on the effective thermal conduction of spherical micro- and nanoparticle suspensions in view of particle rotation[J]. International Journal of Heat and Mass Transfer, 2021, 175: 121251.
|
| [31] |
Luo Y H, Qiu X H, Wang S F, et al. Optimizing a direct flow cooling battery thermal management with bod baffles for electric vehicles: An experimental and simulation study[J]. Journal of Energy Storage, 2023, 74: 109410.
|
| [1] |
Gharehghani A, Rabiei M, Mehranfar S, et al. Progress in battery thermal management systems technologies for electric vehicles[J]. Renewable and Sustainable Energy Reviews, 2024, 202: 114654.
|
| [2] |
He R, Song K W, Wu X, et al. Effectiveness analysis of novel battery thermal management systems combining phase change material and air-cooled technologies[J]. Applied Thermal Engineering, 2025, 264: 125499.
|
| [3] |
Hwang F S, Confrey T, Reidy C, et al. Review of battery thermal management systems in electric vehicles[J]. Renewable and Sustainable Energy Reviews, 2024, 192: 114171.
|
| [4] |
Wang J X, Mao Y F, Miljkovic N. Nano-enhanced graphite/phase change material/graphene composite for sustainable and efficient passive thermal management[J]. Advanced Science, 2024, 11(38): 2402190.
|
| [5] |
储志亮, 陶汉中, 李艳南, 等. 热管和风冷结合的动力电池组热管理系统[J]. 电源技术, 2023, 47(2): 250-255.
|
|
Chu Z L, Tao H Z, Li Y N, et al. Thermal management system of battery combinating of heat pipes and air-cooling [J]. Chinese Journal of Power Sources, 2023, 47(2): 250-255.
|
| [6] |
Zhao L Y, Li W, Wang G Y, et al. A novel thermal management system for lithium-ion battery modules combining direct liquid-cooling with forced air-cooling[J]. Applied Thermal Engineering, 2023, 232: 120992.
|
| [7] |
李志强, 孙广强, 巴义春, 等. 锂离子电池仿生叶脉流道冷板散热研究[J]. 低温与超导, 2023, 51(8): 69-75.
|
|
Li Z Q, Sun G Q, Ba Y C, et al. Research on heat dissipation of lithium-ion battery pack based on bionic leaf vein channel cold plate[J]. Cryogenics and Superconductivity, 2023, 51(8): 69-75.
|
| [8] |
金露, 谢鹏, 赵彦琦, 等. 基于相变材料的电动汽车电池热管理研究进展[J]. 材料导报, 2021, 35(21): 21113-21126.
|
|
Jin L, Xie P, Zhao Y P, et al. Research progress on phase change material based thermal management system of EV batteries[J]. Materials Reivew, 2021, 35(21): 21113-21126.
|
| [9] |
Luo J, Zou D Q, Wang Y S, et al. Battery thermal management systems (BTMs) based on phase change material (PCM): A comprehensive review[J]. Chemical Engineering Journal, 2022, 430: 132741.
|
| [10] |
陈凯, 侯竣升, 陈逸明, 等. 并行流道风冷式电池热管理系统的导流板形状优化[J]. 化工学报, 2020, 71(S2): 55-61.
|
|
Chen K, Hou J S, Chen Y M, et al. Shape optimization of plenums in parallel air-cooled battery thermal management system[J]. CIESC Journal, 2020, 71(S2): 55-61.
|