• •
张贺琦1,2(
), 陆卫中2(
), 李国华1, 王红飞2,3, 陈颖2,3
收稿日期:2025-11-08
修回日期:2025-12-08
出版日期:2025-12-30
通讯作者:
陆卫中
作者简介:张贺琦(2000— ),男,硕士研究生,1789131829@qq.com
基金资助:
Heqi ZHANG1,2(
), Weizhong LU2(
), Guohua LI1, Hongfei WANG2,3, Ying CHEN2,3
Received:2025-11-08
Revised:2025-12-08
Online:2025-12-30
Contact:
Weizhong LU
摘要:
为探究重防腐涂层在万米超深海环境下的防护行为,以TA2钛材为基体,系统研究了粉末与无溶剂液体2种防腐涂层2个典型涂层厚度在实验室100 MPa静态及交变压力自然海水环境中的防护性能演变规律。采用电化学阻抗谱、局部电化学阻抗谱、热重分析、差示扫描量热法、激光共聚焦显微镜和扫描电子显微镜等表征手段对比分析了2种涂层在不同压力、不同厚度条件下的电化学行为、吸水特性与形貌等。结果表明:粉末涂层在整个试验周期内表现出优异的耐海水渗透性能,更低的吸水率和更好的防护性能;交变压力因压缩-膨胀疲劳效应加速了涂层内部微观缺陷的萌生、扩展,导致其防护性能下降高于静态压力。
中图分类号:
张贺琦, 陆卫中, 李国华, 王红飞, 陈颖. 重防腐涂层/TA2在模拟万米超深海环境防护行为研究[J]. 化工学报, DOI: 10.11949/0438-1157.20251241.
Heqi ZHANG, Weizhong LU, Guohua LI, Hongfei WANG, Ying CHEN. Study on the protective behavior of heavy-duty anti-corrosive coatings/TA2 in simulated ultra deep-sea 10,000 meters environment[J]. CIESC Journal, DOI: 10.11949/0438-1157.20251241.
| 材料名称 | 质量分数/% |
|---|---|
| 合计 | 100.0 |
| 高玻璃化温度、高韧性固体改性环氧树脂 | 48.6 |
| 活性纳米和片状填料 | 36.9 |
| 改性多官能羟氨类固化剂 | 10.2 |
| 颜料 | 1.5 |
| 助剂 | 2.8 |
表1 环氧粉末涂料成分组成
Table 1 Material composites of powder coating
| 材料名称 | 质量分数/% |
|---|---|
| 合计 | 100.0 |
| 高玻璃化温度、高韧性固体改性环氧树脂 | 48.6 |
| 活性纳米和片状填料 | 36.9 |
| 改性多官能羟氨类固化剂 | 10.2 |
| 颜料 | 1.5 |
| 助剂 | 2.8 |
| 材料名称 | 质量分数/% |
|---|---|
| 合计 | 100 |
| 高韧性液体改性环氧树脂 | 48.6 |
| 活性纳米和片状填料 | 36.9 |
| 颜料 | 1.5 |
| 腰果壳液、乙二胺和甲醛合成聚合物 | 6.0 |
| 环氧-胺加成物 | 2.2 |
| 羟基化酚聚多胺 | 2.0 |
| 助剂 | 2.8 |
表2 无溶剂环氧液体涂料成分组成
Table 2 Material composites of solvent-free liquid coating
| 材料名称 | 质量分数/% |
|---|---|
| 合计 | 100 |
| 高韧性液体改性环氧树脂 | 48.6 |
| 活性纳米和片状填料 | 36.9 |
| 颜料 | 1.5 |
| 腰果壳液、乙二胺和甲醛合成聚合物 | 6.0 |
| 环氧-胺加成物 | 2.2 |
| 羟基化酚聚多胺 | 2.0 |
| 助剂 | 2.8 |
| 实验对象 | 实验条件 | 时间 | |||||
|---|---|---|---|---|---|---|---|
| 1 d | 11 d | 15 d | 18 d | 20 d | 22 d | ||
体系 (粉末/液体涂层) | 0.1~100 MPa, 150 μm粉末/150 μm液体 | 1.0 | 1.5 | 4.3 | 20.0 | 15.0 | 8.3 |
0.1~100 MPa, 300 μm粉末/300 μm液体 | 1.0 | 7.2 | 10.0 | 2.2 | 2.9 | 2.8 | |
100 MPa条件下 300 μm粉末/300 μm液体 | 1.0 | 9.0 | 7.5 | 7.0 | 7.3 | 10.0 | |
厚度 (300 μm/150 μm) | 0.1~100 MPa, 300 μm粉末150 μm粉末 | 2.0 | 11.0 | 7.6 | 3.2 | 2.9 | 2.0 |
0.1~100 MPa, 300 μm液体/150 μm液体 | 2.0 | 2.5 | 3.3 | 29.0 | 7.7 | 2.5 | |
环境 (静态压力/交变压力) | 100 MPa/0.1~100 MPa 300 μm粉末涂层 | 1.0 | 2.6 | 3.0 | 6.3 | 6.0 | 3.0 |
100 MPa/0.1~100 MPa 300 μm液体涂层 | 1.0 | 2.0 | 4.0 | 2.1 | 2.1 | 2.0 | |
表3 不同试验条件下的RC + Rct比值
Table 3 Coating resistance (RC + Rct) ratio under different conditions
| 实验对象 | 实验条件 | 时间 | |||||
|---|---|---|---|---|---|---|---|
| 1 d | 11 d | 15 d | 18 d | 20 d | 22 d | ||
体系 (粉末/液体涂层) | 0.1~100 MPa, 150 μm粉末/150 μm液体 | 1.0 | 1.5 | 4.3 | 20.0 | 15.0 | 8.3 |
0.1~100 MPa, 300 μm粉末/300 μm液体 | 1.0 | 7.2 | 10.0 | 2.2 | 2.9 | 2.8 | |
100 MPa条件下 300 μm粉末/300 μm液体 | 1.0 | 9.0 | 7.5 | 7.0 | 7.3 | 10.0 | |
厚度 (300 μm/150 μm) | 0.1~100 MPa, 300 μm粉末150 μm粉末 | 2.0 | 11.0 | 7.6 | 3.2 | 2.9 | 2.0 |
0.1~100 MPa, 300 μm液体/150 μm液体 | 2.0 | 2.5 | 3.3 | 29.0 | 7.7 | 2.5 | |
环境 (静态压力/交变压力) | 100 MPa/0.1~100 MPa 300 μm粉末涂层 | 1.0 | 2.6 | 3.0 | 6.3 | 6.0 | 3.0 |
100 MPa/0.1~100 MPa 300 μm液体涂层 | 1.0 | 2.0 | 4.0 | 2.1 | 2.1 | 2.0 | |
| [1] | Hu Q, Li Z F, Zhai X Y, et al. Development of hydraulic lifting system of deep-sea mineral resources[J]. Minerals, 2022, 12(10): 1319. |
| [2] | Chen S, Qiu L P, Sun S F, et al. Research progress on corrosion of equipment and materials in deep-sea environment[J]. Advances in Civil Engineering, 2021, 2021(1): 7803536. |
| [3] | Wu Y M, Zhao W J, Wang L P. State of the art and current trends on the metal corrosion and protection strategies in deep sea[J]. Journal of Materials Science & Technology, 2025, 215: 192-213. |
| [4] | Li Z, Fan L, Ma L, et al. Perspective review on factors that influence the stress corrosion of Ti alloys for deep-sea applications[J]. Journal of Materials Science & Technology, 2025, 222: 228-249. |
| [5] | Zhu J Y, Li D P, Chang W, et al. In situ marine exposure study on corrosion behaviors of five alloys in coastal waters of western Pacific Ocean[J]. Journal of Materials Research and Technology, 2020, 9(4): 8104-8116. |
| [6] | Zhang D L, Liu Y S, Liu R, et al. Characterization of corrosion behavior of TA2 titanium alloy welded joints in seawater environment[J]. Frontiers in Chemistry, 2022, 10: 950768. |
| [7] | Ge C Y, Zhao X, Guo Y D, et al. Study on preparation of magnesium-rich composite coating and performance enhancement by graft modification of epoxy resin[J]. Science and Engineering of Composite Materials, 2019, 26(1): 308-316. |
| [8] | Wang W, Wang H L, Zhao J, et al. Self-healing performance and corrosion resistance of graphene oxide–mesoporous silicon layer–nanosphere structure coating under marine alternating hydrostatic pressure[J]. Chemical Engineering Journal, 2019, 361: 792-804. |
| [9] | Meng F D, Liu L, Liu E H, et al. Synergistic effects of fluid flow and hydrostatic pressure on the degradation of epoxy coating in the simulated deep-sea environment[J]. Progress in Organic Coatings, 2021, 159: 106449. |
| [10] | Melchers R E, Melchers R E. A review of trends for corrosion loss and pit depth in longer-term exposures[J]. Corrosion and Materials Degradation, 2018, 1(1): 42-58. |
| [11] | Ma H Y, Liu R, Cui Y, et al. The effect law of different hydrostatic pressures on the failure of multilayer Cr/GLC coatings in 3.5 wt% NaCl solution[J]. Corrosion Science, 2023, 217: 111120. |
| [12] | Liu Y R, Du H, Zuo X, et al. Cr/GLC multilayered coating in simulated deep-sea environment: Corrosion behavior and growth defect evolution[J]. Corrosion Science, 2021, 188: 109528. |
| [13] | 刘燕. 环氧/陶瓷抗冲蚀复合涂层的制备与性能研究[D]. 成都: 西华大学, 2021. |
| Liu Y. Study on preparation and performance of epoxy/ceramic anti-erosion composite coating. Chengdu: Xihua University, 2021. | |
| [14] | 景文闻. 纤维增强环氧树脂复合涂层的抗冲蚀性能及机制研究[D]. 赣州: 江西理工大学, 2022. |
| Jing W W. study on erosion resistance and mechanism of fiber reinforced epoxy resin composite coating. Ganzhou: Jiangxi University of Science and Technology, 2022. | |
| [15] | 刘杰. 模拟深海环境下有机涂层/低合金钢体系失效过程的研究[D]. 青岛: 中国海洋大学, 2011. |
| Liu J. Study on the deterioration processes of organic coating/low alloy steel systems in simulated deep-sea environment. Qingdao: Ocean University of China, 2011. | |
| [16] | 江水旺, 汤黎容, 王佳妮, 等. 防腐蚀涂层在海水压力交变环境下的性能变化及对比研究[J]. 材料开发与应用, 2017, 32(1): 18-23. |
| Jiang S W, Tang L R, Wang J N, et al. Performance change and comparative study of anti-corrosive coatings in seawater environment with alternating pressure[J]. Development and Application of Materials, 2017, 32(1): 18-23. | |
| [17] | Cao J Y, Zhang H L, Zhang F, et al. Study on the performance evaluation system and application of anti-corrosion coatings under seawater pressure conditions[J]. Modern Paint and Finishing, 2011, 14(10): 59-61. |
| [18] | 王腾宇. 交变压力对环氧涂层在模拟海水环境中失效行为的研究[D]. 沈阳: 沈阳大学, 2021. |
| Wang T Y. Study on the effect of alternating pressure on the failure behavior of epoxy coating in simulated seawater environment. Shenyang: Shenyang University, 2021. | |
| [19] | 王腾宇, 张正贵, 陆卫中, 等. 交变压力对无溶剂环氧涂层在模拟超深海环境下的电化学行为[J]. 中国腐蚀与防护学报, 2022, 42(6): 929-938. |
| Wang T Y, Zhang Z G, Lu W Z, et al. Effect of alternating pressure on electrochemical behavior of solvent-free epoxycoating in simulated ultra-deep sea environment[J]. Journal of Chinese Society for Corrosion and Protection, 2022, 42(6): 929-938. | |
| [20] | Hovikoski J, Virtasalo J J, Wetzel A, et al. Bioturbation in the hadal zone[J]. Nature Communications, 2025, 16(1): 1401. |
| [21] | 林生军, 黄印, 谢东日, 等. 环氧树脂高温分子链松弛与玻璃化转变特性[J]. 物理学报, 2016, 65(7): 077701. |
| Lin S J, Huang Y, Xie D R, et al. High temperature molecular chain relaxation and glass transition properties of epoxy resin[J]. Acta Physica Sinica, 2016, 65(7): 077701. | |
| [22] | 曹楚南, 张鉴清. 电化学阻抗谱导论[M]. 北京: 科学出版社, 2002: 69-82. |
| Cao C N, Zhang J Q. An introduction to electrochemical impedance spectroscopy[M]. Beijing: Science Press, 2002: 69-82. | |
| [23] | Zhang Y X, Yan T T, Fan L, et al. Effect of pH on the corrosion and repassivation behavior of TA2 in simulated seawater[J]. Materials, 2021, 14(22): 6764. |
| [24] | 王贵容, 郑宏鹏, 蔡华洋, 等. 环氧防腐涂料在模拟海水干湿交替条件下的失效过程[J]. 中国腐蚀与防护学报, 2020, 39(6): 571-580. |
| Wang G R, Zheng H P, Cai H Y, et al. Failure process of epoxy anti-corrosion coatings under simulated seawater alternating wet-dry conditions[J]. Journal of Chinese Society for Corrosion and Protection, 2020, 39(6): 571-580. | |
| [25] | Ganborena L, Vega J M, Özkaya B, et al. AN SKP and EIS study of microporous nickel-chromiu |
| [26] | Magar H S, Hassan R Y A, Mulchandani A, et al. Electrochemical impedance spectroscopy (EIS): principles, construction, and biosensing applications[J]. Sensors, 2021, 21(19): 6578. |
| [27] | 刘二海. 深海压力: 流体模拟环境下有机涂层的失效行为研究[D]. 沈阳: 东北大学, 2019.Liu E H. Study on the failure behavior of organic coatings in simulated deep-sea pressure-fluid environment. Shenyang: Northeastern University, 2019. |
| [28] | 胡吉明, 张鉴清, 谢德明, 等. 水在有机涂层中的传输: Ⅱ复杂的实际传输过程[J]. 中国腐蚀与防护学报, 2002, 22(6): 371-374. |
| Hu J M, Zhang J Q, Xie D M, et al. Study on Failure Behavior of Organic Coatings in Deep Sea Pressure-Fluid SimulationEnvironment[J]. Journal of Chinese Society for Corrosion and Protection, 2002, 22(6): 371-374. | |
| [29] | 徐永祥, 严川伟, 高延敏, 等. 水汽在涂层中的扩散传输行为和存在形式[J]. 物理化学学报, 2002, 18(7): 649-652. |
| Xu Y X, Yan C W, Gao Y M, et al. Diffusion transport behavior and existing forms of water vapor in coatings[J]. Acta Physico-Chimica Sinica, 2002, 18(7): 649-652. | |
| [30] | Tian W L, Liu L, Meng F D, et al. The failure behaviour of an epoxy glass flake coating/steel system under marine alternating hydrostatic pressure[J]. Corrosion Science, 2014, 86: 81-92. |
| [1] | 石一帆, 柯钢, 陈浩, 黄孝胜, 叶芳, 李成娇, 郭航. 大型高低温环境实验室温度控制仿真[J]. 化工学报, 2025, 76(S1): 268-280. |
| [2] | 李卫, 陈浩, 柯钢, 黄孝胜, 李成娇, 郭航, 叶芳. 高原环境适应性试验室模拟平台新风系统仿真[J]. 化工学报, 2025, 76(S1): 360-369. |
| [3] | 王三一, 黄文来. 电化学合成氨流程建模与优化[J]. 化工学报, 2025, 76(9): 4474-4486. |
| [4] | 娄岚浩, 杨立鹏, 杨晓光. 锂离子电池电化学机理模型参数辨识研究综述[J]. 化工学报, 2025, 76(9): 4369-4382. |
| [5] | 刘世昌, 李一白, 王靖, 刘永忠. 氢气驱动电化学捕碳系统的模块化设计与优化[J]. 化工学报, 2025, 76(8): 4108-4118. |
| [6] | 刘建海, 王磊, 鲁朝金, 白志山, 张平雨. 耦合电化学与多相流模型的电解槽性能研究[J]. 化工学报, 2025, 76(8): 3885-3893. |
| [7] | 罗佳欣, 袁艳. 压电材料在固态金属二次电池中的研究进展[J]. 化工学报, 2025, 76(8): 3822-3833. |
| [8] | 杨宁, 李皓男, LIN Xiao, GEORGIADOU Stella, LIN Wen-Feng. 从塑料废弃物到能源催化剂:塑料衍生碳@CoMoO4复合材料在电解水析氢反应中的应用[J]. 化工学报, 2025, 76(8): 4081-4094. |
| [9] | 王御风, 罗小雪, 范鸿亮, 吴白婧, 李存璞, 魏子栋. 耦合电解水制氢的绿色有机电合成——电极界面调控策略综述[J]. 化工学报, 2025, 76(8): 3753-3771. |
| [10] | 吴鹂霄, 燕溪溪, 张素娜, 徐一鸣, 钱佳颖, 乔永民, 王利军. 磷掺杂微晶石墨的制备及其在锂离子电池负极材料中的电化学性能研究[J]. 化工学报, 2025, 76(7): 3615-3625. |
| [11] | 陈培强, 郑群, 姜玉廷, 熊春华, 陈今茂, 王旭东, 黄龙, 阮曼, 徐万里. 电液流量及电流密度对海水激活电池输出特性的影响[J]. 化工学报, 2025, 76(7): 3235-3245. |
| [12] | 李欣然, 常龙娇, 罗绍华, 李永兵, 杨瑞芬, 侯增磊, 邹杰. Ho掺杂诱导NCM622局域电子重构抑制阳离子混排的改性机制研究[J]. 化工学报, 2025, 76(7): 3733-3741. |
| [13] | 王珺仪, 夏章讯, 景粉宁, 王素力. 基于重整气的高温聚合物电解质膜燃料电池电化学阻抗谱弛豫时间分布研究[J]. 化工学报, 2025, 76(7): 3509-3520. |
| [14] | 杨鹏, 尤万里, 凌忠钱, 曾宪阳, 李允超, 林佳一, 王丽建, 袁定琨. 紧凑式三室RTO系统处理乙酸乙酯废气性能的实验研究[J]. 化工学报, 2025, 76(7): 3585-3595. |
| [15] | 孙国庆, 李海波, 丁志阳, 郭文辉, 徐浩, 赵艳侠. 硅基负极材料的研究进展[J]. 化工学报, 2025, 76(7): 3197-3211. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号