化工学报 ›› 2018, Vol. 69 ›› Issue (2): 535-545.doi: 10.11949/j.issn.0438-1157.20170947

• 综述与专论 • 上一篇    下一篇

氧化石墨烯复合水凝胶研究进展

单国荣, 张宁   

  1. 化学工程联合国家重点实验室, 浙江大学化学工程与生物工程学院, 浙江 杭州 310027
  • 收稿日期:2017-07-24 修回日期:2017-11-14 出版日期:2018-02-05 发布日期:2018-02-05
  • 通讯作者: 单国荣 E-mail:shangr@zju.edu.cn

Research progress on graphene oxide composite hydrogels

SHAN Guorong, ZHANG Ning   

  1. State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
  • Received:2017-07-24 Revised:2017-11-14 Published:2018-02-05 Online:2018-02-05

摘要:

氧化石墨烯(GO)是一种廉价易得、水中易分散、光热性能好的二维纳米材料。将氧化石墨烯与水凝胶结合,可以赋予水凝胶许多纳米材料的优异性能,大大拓展水凝胶的潜在应用。详细介绍了具有力学性能、光热转化性能、自修复性能的氧化石墨烯复合水凝胶及其在智能驱动器、细胞骨架等方面的应用,并对其未来研究方向提出展望和设想。

关键词: 纳米材料, 复合材料, 聚合物, 氧化石墨烯, 水凝胶

Abstract:

Graphene oxide (GO) is a kind of two-dimensional nanomaterial, which is cheap, easy to disperse in water, able to response to near infrared (NIR) light and has good thermal performance. The introduction of graphene oxide endows hydrogels with varieties of excellent properties of nanomaterials, thus greatly broadens the potential application of hydrogels. In this paper, graphene oxide composite hydrogels with excellent mechanical properties, superior thermal conductivity to absorb NIR, self-healing ability and its application in the smart actuators and cell scaffolds are introduced in detail. The direction of its future research and prospect are put forward.

Key words: nanomaterials, composites, polymers, graphene oxide, hydrogels

中图分类号: 

  • TQ317.9
[1] ROGOVINA L Z, VASIL'EV V G, BRAUDO E E. Definition of the concept of polymer gel[J]. Polymer Science, 2008, 50(1):85-92.
[2] XIAO H, LU W, LE X X, et al. A multi-responsive hydrogel with a triple shape memory effect based on reversible switches[J]. Chemical Communications, 2016, 52(90):13292-13295.
[3] NI M F, ZHANG N, XIA W, et al. Dramatically promoted swelling of a hydrogel by pillar
[6] arene-ferrocene complexation with multistimuli responsiveness[J]. Journal of the American Chemical Society, 2016, 138(20):6643-6649.
[4] XIAO Y Y, GONG X L, KANG Y, et al. Light-, pH-and thermal-responsive hydrogels with the triple-shape memory effect[J]. Chemical Communications, 2016, 52(70):10609-10612.
[5] HAO G P, HIPPAUF F, OSCHATZ M, et al. Stretchable and semitransparent conductive hybrid hydrogels for flexible supercapacitors[J]. ACS Nano, 2014, 8(7):7138-7146.
[6] HAN L, LU X, WANG M H, et al. A mussel-inspired conductive, self-adhesive, and self-healable tough hydrogel as cell stimulators and implantable bioelectronics[J]. Small, 2017, 13(2):1601916.
[7] YANG X J, LIU X, LIU Z, et al. Near-infrared light-triggered, targeted drug delivery to cancer cells by aptamer gated nanovehicles[J]. Advanced Materials, 2012, 24(21):2890-2895.
[8] FUSCO S, SAKAR M S, KENNEDY S, et al. An integrated microrobotic platform for on-demand, targeted therapeutic interventions[J]. Advanced Materials, 2014, 26(6):952-957.
[9] HUANG C C, BAI H, LI C, et al. A graphene oxide/hemoglobin composite hydrogel for enzymatic catalysis in organic solvents[J]. Chemical Communications, 2011, 47(17):4962-4964.
[10] SAHU A, CHOI W I, TAE G, et al. A stimuli-sensitive injectable graphene oxide composite hydrogel[J]. Chemical Communications, 2012, 48(47):5820-5822.
[11] JUBY K A, DWIVEDI C, KUMAR M, et al. Silver nanoparticle-loaded PVA/gum acacia hydrogel:synthesis, characterization and antibacterial study[J]. Carbohydrate Polymers, 2012, 89(3):906-913.
[12] YANG J, HAN C R, DUAN J F, et al. Studies on the properties and formation mechanism of flexible nanocomposite hydrogels from cellulose nanocrystals and poly(acrylic acid)[J]. Journal of Materials Chemistry, 2012, 22(42):22467-22480.
[13] WANG Q, HOU R X, CHENG Y J, et al. Super-tough double-network hydrogels reinforced by covalently compositing with silica-nanoparticles[J]. Soft Matter, 2012, 8(22):6048-6056.
[14] BAI H, LI C, WANG X L, et al. A pH-sensitive graphene oxide composite hydrogel[J]. Chemical Communications, 2010, 46(14):2376-2378.
[15] ZHANG E Z, WANG T, LIAN C X, et al. Robust and thermo-response graphene-PNIPAm hybrid hydrogels reinforced by hectorite clay[J]. Carbon, 2013, 62:117-126.
[16] SHEN J, YAN B, LI T, et al. Study on graphene-oxide-based polyacrylamide composite hydrogels[J]. Composites Part A-Applied Science & Manufacturing, 2012, 43(9):1476-1481.
[17] XU Y X, WU Q, SUN Y Q, et al. Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels[J]. ACS Nano, 2010, 4(12):7358-7362.
[18] LIU J Q, SONG G S, HE C C, et al. Self-healing in tough graphene oxide composite hydrogels[J]. Macromolecular Rapid Communications, 2013, 34(12):1002-1007.
[19] CONG H P, WANG P, YU S H. Stretchable and self-healing graphene oxide-polymer composite hydrogels:a dual-network design[J]. Chemistry of Materials, 2013, 25(16):3357-3362.
[20] MERINO S, MARTIN C, KOSTARELOS K, et al. Nanocomposite hydrogels:3D polymer-nanoparticle synergies for on-demand drug delivery[J]. ACS Nano, 2015, 9(5):4686-4697.
[21] HUANG X H, NERETINA S, EI-SAYED M A. Gold nanorods:from synthesis and properties to biological and biomedical applications[J]. Advanced Materials, 2009, 21(48):4880-4910.
[22] ZHU C H, LU Y, CHEN J F, et al. Photothermal poly(N-isopropylacrylamide)/Fe3O4 nanocomposite hydrogel as a movable position heating source under remote control[J]. Small, 2014, 10(14):2796-2800.
[23] PARK S, RUOFF R S. Chemical methods for the production of graphenes[J]. Nature Nanotechnology, 2010, 5(4):309.
[24] ZHANG Y Y, GONG S S, ZHANG Q, et al. Graphene-based artificial nacre nanocomposites[J]. Chemical Society Reviews, 2016, 45(9):2378-2395.
[25] LI F, JIANG X, ZHAO J J, et al. Graphene oxide:a promising nanomaterial for energy and environmental applications[J]. Nano Energy, 2015, 16:488-515.
[26] NARAYAN R, KIM J E, KIM J Y, et al. Graphene oxide liquid crystals:discovery, evolution and applications[J]. Advanced Materials, 2016, 28(16):3045-3068.
[27] ZHU C H, LU Y, PENG J, et al. Photothermally sensitive poly(N-isopropylacrylamide)/graphene oxide nanocomposite hydrogels as remote light-controlled liquid microvalves[J]. Advanced Functional Materials, 2012, 22(19):4017-4022.
[28] ABDELSAYED V, MOUSSA S, HASSAN H M, et al. Photothermal deoxygenation of graphite oxide with laser excitation in solution and graphene-aided increase in water temperature[J]. Journal of Physical Chemistry Letters, 2010, 1(19):2804-2809.
[29] ZHU Y W, MURALI S, CAI W W, et al. Graphene and graphene oxide:synthesis, properties, and applications[J]. Advanced Materials, 2010, 22(46):5226.
[30] CASABIANCA L B, SHAIBAT M A, CAI W W, et al. NMR-based structural modeling of graphite oxide using multidimensional C-13 solid-state NMR and ab initio chemical shift calculations[J]. Journal of the American Chemical Society, 2010, 132(16):5672-5676.
[31] TEXTER J. Graphene oxide and graphene flakes as stabilizers and dispersing aids[J]. Current Opinion in Colloid & Interface Science, 2015, 20(5/6):454-464.
[32] NIYOGI S, BEKYAROVA E, ITKIS M E, et al. Solution properties of graphite and grapheme[J]. Journal of the American Chemical Society, 2006, 128(24):7720-7721.
[33] BISSESSUR R, LIU P K Y, WHITE W, et al. Encapsulation of polyanilines into graphite oxide[J]. Langmuir, 2006, 22(4):1729-1734.
[34] 王立娜, 陈成猛, 杨永岗, 等. 氧化石墨烯-酚醛树脂薄膜的制备及性能研究[J]. 材料导报, 2010, 24(18):54-56. WANG L N, CHEN C M, YANG Y G, et al. The preparation and properties of graphene oxide sheets/phenolic resin composites[J]. Materials Review, 2010, 24(18):54-56.
[35] NAFICY S, BROWN H R, RAZAL J M, et al. Progress toward robust polymer hydrogels[J]. Australian Journal of Chemistry, 2011, 64(8):1007-1025.
[36] COSTA A M S, MANO J F. Extremely strong and tough hydrogels as prospective candidates for tissue repair-a review[J]. European Polymer Journal, 2015, 72:344-364.
[37] YANG Y Y, WANG X, YANG F, et al. A universal soaking strategy to convert composite hydrogels into extremely tough and rapidly recoverable double-network hydrogels[J]. Advanced Materials, 2016, 28(33):7178-7184.
[38] SUN W X, XUE B, LI Y, et al. Polymer-supramolecular polymer double-network hydrogel[J]. Advanced Functional Materials, 2016, 26(48):9044-9052.
[39] FAGHIHI S, GHEYSOUR M, KARIMI A, et al. Fabrication and mechanical characterization of graphene oxide-reinforced poly (acrylic acid)/gelatin composite hydrogels[J]. Journal of Applied Physics, 2014, 115(8):083513.
[40] KIM H, ABDALA A A, MACOSKO C W. Graphene/polymer nanocomposites[J]. Macromolecules, 2010, 43(16):6515-6530.
[41] HUANG W S, SHEN J F, LI N, et al. Study on a new polymer/graphene oxide/clay double network hydrogel with improved response rate and mechanical properties[J]. Polymer Engineering and Science, 2015, 55(6):1361-1366.
[42] LI Z Q, SHEN J F, MA H W, et al. Preparation and characterization of pH-and temperature-responsive hydrogels with surface-functionalized graphene oxide as the crosslinker[J]. Soft Matter, 2012, 8(11):3139-3145.
[43] BAI H, LI C, WANG X L, et al. On the gelation of graphene oxide[J]. Journal of Physical Chemistry C, 2011, 115(13):5545-5551.
[44] MA X M, LI Y H, WANG W C, et al. Temperature-sensitive poly(N-isopropylacrylamide)/graphene oxide nanocomposite hydrogels by in situ, polymerization with improved swelling capability and mechanical behavior[J]. European Polymer Journal, 2013, 49(2):389-396.
[45] ZHANG L, WANG Z P, XU C, et al. High strength graphene oxide/polyvinyl alcohol composite hydrogels[J]. Journal of Materials Chemistry, 2011, 21(28):10399-10406.
[46] SHEN J F, YAN B, LI T, et al. Mechanical, thermal and swelling properties of poly(acrylic acid)-graphene oxide composite hydrogels[J]. Soft Matter, 2012, 8(6):1831-1836.
[47] BAI H, LI C, SHI G Q, et al. Functional composite materials based on chemically converted graphene[J]. Advanced Materials, 2011, 23(9):1089-1115.
[48] CHA C, SHIN S R, GAO X, et al. Controlling mechanical properties of cell-laden hydrogels by covalent incorporation of graphene oxide[J]. Small, 2014, 10(3):514-523.
[49] ZHAO X, ZHANG Q H, CHEN D J, et al. Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites[J]. Macromolecules, 2010, 43(5):2357-2363.
[50] LIU J Q, CHEN C F, HE C C, et al. Synthesis of graphene peroxide and its application in fabricating super extensible and highly resilient nanocomposite hydrogels[J]. ACS Nano, 2012, 6(9):8194-8202.
[51] PIAO Y Z, CHEN B Q. Synthesis and mechanical properties of double cross-linked gelatin-graphene oxide hydrogels[J]. International Journal of Biological Macromolecules, 2017, 101:791-798.
[52] WANG B, JEON Y S, PARK H S, et al. Self-healable mussel-mimetic nanocomposite hydrogel based on catechol-containing polyaspartamide and graphene oxide[J]. Materials Science and Engineering C-Materials for Biological Applications, 2016, 69:160-170.
[53] ZHONG M L, LIU Y T, XIE X M. Self-healable, super tough graphene oxide/poly(acrylic acid) nanocomposite hydrogels facilitated by dual cross-linking effects through dynamic ionic interactions[J]. Journal of Materials Chemistry B, 2015, 3(19):4001-4008.
[54] ROBINSON J T, TABAKMAN S M, LIANG Y Y, et al. Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy[J]. Journal of the American Chemical Society, 2011, 133(17):6825-6831.
[55] LI M, YANG X J, REN J S, et al. Using graphene oxide high near-infrared absorbance for photothermal treatment of Alzheimer's disease[J]. Advanced Materials, 2012, 24(13):1722-1728.
[56] KIM D, LEE H S, YOON J. Remote control of volume phase transition of hydrogels containing graphene oxide by visible light irradiation[J]. RSC Advances, 2014, 4(48):25379-25383.
[57] SHI K, LIU Z, WEI Y Y, et al. Near-infrared light-responsive poly(N-isopropylacrylamide)/graphene oxide nanocomposite hydrogels with ultrahigh tensibility[J]. ACS Applied Materials & Interfaces, 2015, 7(49):27289-27298.
[58] WANG E, DESAI M S, LEE S W. Light-controlled graphene-elastin composite hydrogel actuators[J]. Nano Letters, 2013, 13(6):2826-2830.
[59] ZHANG E Z, WANG T, HONG W, et al. Infrared-driving actuation based on bilayer graphene oxide-poly(N-isopropylacrylamide) nanocomposite hydrogels[J]. Journal of Materials Chemistry A, 2014, 2(37):15633-15639.
[60] MA C X, LE X X, TANG X L, et al. A multiresponsive anisotropic hydrogel with macroscopic 3D complex deformations[J]. Advanced Functional Materials, 2016, 26(47):8670-8676.
[61] HOU C Y, ZHANG Q H, WANG H Z, et al. Functionalization of PNIPAAm microgels using magnetic graphene and their application in microreactors as switch materials[J]. Journal of Materials Chemistry, 2011, 21(28):10512-10517.
[62] ZHANG N N, LI R Q, ZHANG L, et al. Actuator materials based on graphene oxide/polyacrylamide composite hydrogels prepared by in situ polymerization[J]. Soft Matter, 2011, 7(16):7231-7239.
[63] JIAO T F, LIU Y Z, WU Y T, et al. Facile and scalable preparation of graphene oxide-based magnetic hybrids for fast and highly efficient removal of organic dyes[J]. Scientific Reports, 2015, 5:12451.
[64] LO C W, ZHU D F, JIANG H R, et al. An infrared-light responsive graphene-oxide incorporated poly(N-isopropylacrylamide) hydrogel nanocomposite[J]. Soft Matter, 2011, 7(12):5604-5609.
[65] ANNABI N, NICHOL J W, ZHONG X, et al. Controlling the porosity and microarchitecture of hydrogels for tissue engineering[J]. Tissue Engineering Part B-Reviews, 2010, 16(4):371-383.
[66] MADHUMATHI K, SHALUMON K T, RANI V V D, et al. Wet chemical synthesis of chitosan hydrogel-hydroxyapatite composite membranes for tissue engineering applications[J]. International Journal of Biological Macromolecules, 2009, 45(1):12-15.
[67] LI H, ZHAO L, CHEN X D, et al. Swelling of whey and egg white protein hydrogels with stranded and particulate microstructures[J]. International Journal of Biological Macromolecules, 2016, 83:152-159.
[68] LI W, WANG J S, REN J S, et al. 3D graphene oxide-polymer hydrogel:near-infrared light-triggered active scaffold for reversible cell capture and on-demand release[J]. Advanced Materials, 2013, 25(46):6737-6743.
[69] PIAO Y Z, CHEN B Q. Characterization, formation mechanisms, and pH-sensitive drug release behavior[J]. Journal of Polymer Science Part B-Polymer Physics, 2014, 53(5):356-367.
[70] SHIN S R, AGHAEI-GHAREH-BOLAGH B, DANG T T, et al. Cell-laden microengineered and mechanically tunable hybrid hydrogels of gelatin and graphene oxide[J]. Advanced Materials, 2013, 25(44):6385-6391.
[71] PARK S, LEE K S, BOZOKLU G, et al. Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking[J]. ACS Nano, 2008, 2(3):572-578.
[72] CHEN Y Q, CHEN L B, BAI H, et al. Graphene oxide-chitosan composite hydrogels as broad-spectrum adsorbents for water purification[J]. Journal of Materials Chemistry A, 2013, 1(6):1992-2001.
[73] PARSAMANESH M, TEHRANI A D, MANSOURPANAH Y. Supramolecular hydrogel based on cyclodextrin modified GO as a potent natural organic matter absorbent[J]. European Polymer Journal, 2017, 92:126-136.
[74] ROTZETTER A C C, SCHUMACHER C M, BUBENHOFER S B, et al. Thermoresponsive polymer induced sweating surfaces as an efficient way to passively cool buildings[J]. Advanced Materials, 2012, 24(39):5352-5356.
[75] LI D H W, LAM J C, LAU C C S, et al. Lighting and energy performance of solar film coating in air-conditioned cellular offices[J]. Renewable Energy, 2004, 29(6):921-937.
[76] BAETENS R, JELLE B P, GUSTAVSEN A. Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings:a state-of-the-art review[J]. Solar Energy Materials and Solar Cells, 2010, 94(2):87-105.
[77] CHOU H T, CHEN Y C, LEE C Y, et al. Switchable transparency of dual-controlled smart glass prepared with hydrogel-containing graphene oxide for energy efficiency[J]. Solar Energy Materials and Solar Cells, 2017, 166:45-51.
[1] 李文涛, 林慧娟, 钟海. 原位构建富氟SEI的凝胶电解质用于金属锂二次电池[J]. 化工学报, 2022, 73(7): 3240-3250.
[2] 高端辉, 肖卫强, 高峰, 夏倩, 汪曼秋, 卢昕博, 詹晓力, 张庆华. 聚酰亚胺基气凝胶材料的制备与应用[J]. 化工学报, 2022, 73(7): 2757-2773.
[3] 刘晓涯, 王金超, 刘莹, 马敬环. 水合肼制氢纳米催化剂改性制备及机理研究进展[J]. 化工学报, 2022, 73(7): 2819-2834.
[4] 王姝焱, 张瑞阳, 刘润, 刘凯, 周莹. Mn(BO22/BNO界面结构调控增强催化臭氧分解性能研究[J]. 化工学报, 2022, 73(7): 3193-3201.
[5] 黄仕元, 邓简, 袁瀚钦, 王国华, 吴兴良. 钴强化铁磁体活化过一硫酸盐的实验研究[J]. 化工学报, 2022, 73(7): 3045-3056.
[6] 曾欣欣, 白慧娟, 俞娟, 黄培, 杨超, 徐俊波. 面向空天动力用聚酰亚胺树脂基复合材料介尺度结构与调控[J]. 化工学报, 2022, 73(6): 2352-2369.
[7] 李智超, 郑瑜, 张润楠, 姜忠义. 高通量抗污染氧化石墨烯膜研究进展[J]. 化工学报, 2022, 73(6): 2370-2380.
[8] 李梦雨, 王冬祥, 郑晓阳, 徐桂转, 杜朝军, 常春. 粗甘油生物基聚氨酯材料的制备及吸附性能研究[J]. 化工学报, 2022, 73(5): 2270-2278.
[9] 刘庆祎, 肖桐, 孙文杰, 张家豪, 刘昌会. 纳米二氧化钛强化的相变储能研究进展[J]. 化工学报, 2022, 73(5): 1863-1882.
[10] 韩雪, 高生旺, 王国英, 夏训峰. 铈掺杂强化碳纳米管活化过一硫酸盐实验研究[J]. 化工学报, 2022, 73(4): 1743-1753.
[11] 陈子禾, 赵呈志, 冒文莉, 盛楠, 朱春宇. 定向生物质多孔碳复合相变材料的制备及其热性能研究[J]. 化工学报, 2022, 73(4): 1817-1825.
[12] 钟国栋, 邓超和, 王洋, 王佳韵, 王如竹. 蜂窝状水凝胶吸附床传热传质特性数值模拟及验证[J]. 化工学报, 2022, 73(3): 1083-1092.
[13] 张苗, 杨洪海, 尹勇, 徐悦, 沈俊杰, 卢心诚, 施伟刚, 王军. 氧化石墨烯/水脉动热管的启动及传热特性[J]. 化工学报, 2022, 73(3): 1136-1146.
[14] 张瑾渊, 徐娜, 贺文云, 吕耀东, 刘子璐, 张兴芳. 消防用PEO/OTAC/NaSal减阻体系的介观分子动力学分析[J]. 化工学报, 2022, 73(3): 1157-1165.
[15] 许超群, 俞娟, 范一民, 王基夫, 储富祥. 原子转移自由基聚合法接枝改性纳米纤维素及其功能化应用[J]. 化工学报, 2022, 73(3): 1022-1043.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!