化工学报 ›› 2018, Vol. 69 ›› Issue (2): 535-545.DOI: 10.11949/j.issn.0438-1157.20170947
单国荣, 张宁
收稿日期:
2017-07-24
修回日期:
2017-11-14
出版日期:
2018-02-05
发布日期:
2018-02-05
通讯作者:
单国荣
SHAN Guorong, ZHANG Ning
Received:
2017-07-24
Revised:
2017-11-14
Online:
2018-02-05
Published:
2018-02-05
摘要:
氧化石墨烯(GO)是一种廉价易得、水中易分散、光热性能好的二维纳米材料。将氧化石墨烯与水凝胶结合,可以赋予水凝胶许多纳米材料的优异性能,大大拓展水凝胶的潜在应用。详细介绍了具有力学性能、光热转化性能、自修复性能的氧化石墨烯复合水凝胶及其在智能驱动器、细胞骨架等方面的应用,并对其未来研究方向提出展望和设想。
中图分类号:
单国荣, 张宁. 氧化石墨烯复合水凝胶研究进展[J]. 化工学报, 2018, 69(2): 535-545.
SHAN Guorong, ZHANG Ning. Research progress on graphene oxide composite hydrogels[J]. CIESC Journal, 2018, 69(2): 535-545.
[1] | ROGOVINA L Z, VASIL'EV V G, BRAUDO E E. Definition of the concept of polymer gel[J]. Polymer Science, 2008, 50(1):85-92. |
[2] | XIAO H, LU W, LE X X, et al. A multi-responsive hydrogel with a triple shape memory effect based on reversible switches[J]. Chemical Communications, 2016, 52(90):13292-13295. |
[3] | NI M F, ZHANG N, XIA W, et al. Dramatically promoted swelling of a hydrogel by pillar |
[6] | arene-ferrocene complexation with multistimuli responsiveness[J]. Journal of the American Chemical Society, 2016, 138(20):6643-6649. |
[4] | XIAO Y Y, GONG X L, KANG Y, et al. Light-, pH-and thermal-responsive hydrogels with the triple-shape memory effect[J]. Chemical Communications, 2016, 52(70):10609-10612. |
[5] | HAO G P, HIPPAUF F, OSCHATZ M, et al. Stretchable and semitransparent conductive hybrid hydrogels for flexible supercapacitors[J]. ACS Nano, 2014, 8(7):7138-7146. |
[6] | HAN L, LU X, WANG M H, et al. A mussel-inspired conductive, self-adhesive, and self-healable tough hydrogel as cell stimulators and implantable bioelectronics[J]. Small, 2017, 13(2):1601916. |
[7] | YANG X J, LIU X, LIU Z, et al. Near-infrared light-triggered, targeted drug delivery to cancer cells by aptamer gated nanovehicles[J]. Advanced Materials, 2012, 24(21):2890-2895. |
[8] | FUSCO S, SAKAR M S, KENNEDY S, et al. An integrated microrobotic platform for on-demand, targeted therapeutic interventions[J]. Advanced Materials, 2014, 26(6):952-957. |
[9] | HUANG C C, BAI H, LI C, et al. A graphene oxide/hemoglobin composite hydrogel for enzymatic catalysis in organic solvents[J]. Chemical Communications, 2011, 47(17):4962-4964. |
[10] | SAHU A, CHOI W I, TAE G, et al. A stimuli-sensitive injectable graphene oxide composite hydrogel[J]. Chemical Communications, 2012, 48(47):5820-5822. |
[11] | JUBY K A, DWIVEDI C, KUMAR M, et al. Silver nanoparticle-loaded PVA/gum acacia hydrogel:synthesis, characterization and antibacterial study[J]. Carbohydrate Polymers, 2012, 89(3):906-913. |
[12] | YANG J, HAN C R, DUAN J F, et al. Studies on the properties and formation mechanism of flexible nanocomposite hydrogels from cellulose nanocrystals and poly(acrylic acid)[J]. Journal of Materials Chemistry, 2012, 22(42):22467-22480. |
[13] | WANG Q, HOU R X, CHENG Y J, et al. Super-tough double-network hydrogels reinforced by covalently compositing with silica-nanoparticles[J]. Soft Matter, 2012, 8(22):6048-6056. |
[14] | BAI H, LI C, WANG X L, et al. A pH-sensitive graphene oxide composite hydrogel[J]. Chemical Communications, 2010, 46(14):2376-2378. |
[15] | ZHANG E Z, WANG T, LIAN C X, et al. Robust and thermo-response graphene-PNIPAm hybrid hydrogels reinforced by hectorite clay[J]. Carbon, 2013, 62:117-126. |
[16] | SHEN J, YAN B, LI T, et al. Study on graphene-oxide-based polyacrylamide composite hydrogels[J]. Composites Part A-Applied Science & Manufacturing, 2012, 43(9):1476-1481. |
[17] | XU Y X, WU Q, SUN Y Q, et al. Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels[J]. ACS Nano, 2010, 4(12):7358-7362. |
[18] | LIU J Q, SONG G S, HE C C, et al. Self-healing in tough graphene oxide composite hydrogels[J]. Macromolecular Rapid Communications, 2013, 34(12):1002-1007. |
[19] | CONG H P, WANG P, YU S H. Stretchable and self-healing graphene oxide-polymer composite hydrogels:a dual-network design[J]. Chemistry of Materials, 2013, 25(16):3357-3362. |
[20] | MERINO S, MARTIN C, KOSTARELOS K, et al. Nanocomposite hydrogels:3D polymer-nanoparticle synergies for on-demand drug delivery[J]. ACS Nano, 2015, 9(5):4686-4697. |
[21] | HUANG X H, NERETINA S, EI-SAYED M A. Gold nanorods:from synthesis and properties to biological and biomedical applications[J]. Advanced Materials, 2009, 21(48):4880-4910. |
[22] | ZHU C H, LU Y, CHEN J F, et al. Photothermal poly(N-isopropylacrylamide)/Fe3O4 nanocomposite hydrogel as a movable position heating source under remote control[J]. Small, 2014, 10(14):2796-2800. |
[23] | PARK S, RUOFF R S. Chemical methods for the production of graphenes[J]. Nature Nanotechnology, 2010, 5(4):309. |
[24] | ZHANG Y Y, GONG S S, ZHANG Q, et al. Graphene-based artificial nacre nanocomposites[J]. Chemical Society Reviews, 2016, 45(9):2378-2395. |
[25] | LI F, JIANG X, ZHAO J J, et al. Graphene oxide:a promising nanomaterial for energy and environmental applications[J]. Nano Energy, 2015, 16:488-515. |
[26] | NARAYAN R, KIM J E, KIM J Y, et al. Graphene oxide liquid crystals:discovery, evolution and applications[J]. Advanced Materials, 2016, 28(16):3045-3068. |
[27] | ZHU C H, LU Y, PENG J, et al. Photothermally sensitive poly(N-isopropylacrylamide)/graphene oxide nanocomposite hydrogels as remote light-controlled liquid microvalves[J]. Advanced Functional Materials, 2012, 22(19):4017-4022. |
[28] | ABDELSAYED V, MOUSSA S, HASSAN H M, et al. Photothermal deoxygenation of graphite oxide with laser excitation in solution and graphene-aided increase in water temperature[J]. Journal of Physical Chemistry Letters, 2010, 1(19):2804-2809. |
[29] | ZHU Y W, MURALI S, CAI W W, et al. Graphene and graphene oxide:synthesis, properties, and applications[J]. Advanced Materials, 2010, 22(46):5226. |
[30] | CASABIANCA L B, SHAIBAT M A, CAI W W, et al. NMR-based structural modeling of graphite oxide using multidimensional C-13 solid-state NMR and ab initio chemical shift calculations[J]. Journal of the American Chemical Society, 2010, 132(16):5672-5676. |
[31] | TEXTER J. Graphene oxide and graphene flakes as stabilizers and dispersing aids[J]. Current Opinion in Colloid & Interface Science, 2015, 20(5/6):454-464. |
[32] | NIYOGI S, BEKYAROVA E, ITKIS M E, et al. Solution properties of graphite and grapheme[J]. Journal of the American Chemical Society, 2006, 128(24):7720-7721. |
[33] | BISSESSUR R, LIU P K Y, WHITE W, et al. Encapsulation of polyanilines into graphite oxide[J]. Langmuir, 2006, 22(4):1729-1734. |
[34] | 王立娜, 陈成猛, 杨永岗, 等. 氧化石墨烯-酚醛树脂薄膜的制备及性能研究[J]. 材料导报, 2010, 24(18):54-56. WANG L N, CHEN C M, YANG Y G, et al. The preparation and properties of graphene oxide sheets/phenolic resin composites[J]. Materials Review, 2010, 24(18):54-56. |
[35] | NAFICY S, BROWN H R, RAZAL J M, et al. Progress toward robust polymer hydrogels[J]. Australian Journal of Chemistry, 2011, 64(8):1007-1025. |
[36] | COSTA A M S, MANO J F. Extremely strong and tough hydrogels as prospective candidates for tissue repair-a review[J]. European Polymer Journal, 2015, 72:344-364. |
[37] | YANG Y Y, WANG X, YANG F, et al. A universal soaking strategy to convert composite hydrogels into extremely tough and rapidly recoverable double-network hydrogels[J]. Advanced Materials, 2016, 28(33):7178-7184. |
[38] | SUN W X, XUE B, LI Y, et al. Polymer-supramolecular polymer double-network hydrogel[J]. Advanced Functional Materials, 2016, 26(48):9044-9052. |
[39] | FAGHIHI S, GHEYSOUR M, KARIMI A, et al. Fabrication and mechanical characterization of graphene oxide-reinforced poly (acrylic acid)/gelatin composite hydrogels[J]. Journal of Applied Physics, 2014, 115(8):083513. |
[40] | KIM H, ABDALA A A, MACOSKO C W. Graphene/polymer nanocomposites[J]. Macromolecules, 2010, 43(16):6515-6530. |
[41] | HUANG W S, SHEN J F, LI N, et al. Study on a new polymer/graphene oxide/clay double network hydrogel with improved response rate and mechanical properties[J]. Polymer Engineering and Science, 2015, 55(6):1361-1366. |
[42] | LI Z Q, SHEN J F, MA H W, et al. Preparation and characterization of pH-and temperature-responsive hydrogels with surface-functionalized graphene oxide as the crosslinker[J]. Soft Matter, 2012, 8(11):3139-3145. |
[43] | BAI H, LI C, WANG X L, et al. On the gelation of graphene oxide[J]. Journal of Physical Chemistry C, 2011, 115(13):5545-5551. |
[44] | MA X M, LI Y H, WANG W C, et al. Temperature-sensitive poly(N-isopropylacrylamide)/graphene oxide nanocomposite hydrogels by in situ, polymerization with improved swelling capability and mechanical behavior[J]. European Polymer Journal, 2013, 49(2):389-396. |
[45] | ZHANG L, WANG Z P, XU C, et al. High strength graphene oxide/polyvinyl alcohol composite hydrogels[J]. Journal of Materials Chemistry, 2011, 21(28):10399-10406. |
[46] | SHEN J F, YAN B, LI T, et al. Mechanical, thermal and swelling properties of poly(acrylic acid)-graphene oxide composite hydrogels[J]. Soft Matter, 2012, 8(6):1831-1836. |
[47] | BAI H, LI C, SHI G Q, et al. Functional composite materials based on chemically converted graphene[J]. Advanced Materials, 2011, 23(9):1089-1115. |
[48] | CHA C, SHIN S R, GAO X, et al. Controlling mechanical properties of cell-laden hydrogels by covalent incorporation of graphene oxide[J]. Small, 2014, 10(3):514-523. |
[49] | ZHAO X, ZHANG Q H, CHEN D J, et al. Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites[J]. Macromolecules, 2010, 43(5):2357-2363. |
[50] | LIU J Q, CHEN C F, HE C C, et al. Synthesis of graphene peroxide and its application in fabricating super extensible and highly resilient nanocomposite hydrogels[J]. ACS Nano, 2012, 6(9):8194-8202. |
[51] | PIAO Y Z, CHEN B Q. Synthesis and mechanical properties of double cross-linked gelatin-graphene oxide hydrogels[J]. International Journal of Biological Macromolecules, 2017, 101:791-798. |
[52] | WANG B, JEON Y S, PARK H S, et al. Self-healable mussel-mimetic nanocomposite hydrogel based on catechol-containing polyaspartamide and graphene oxide[J]. Materials Science and Engineering C-Materials for Biological Applications, 2016, 69:160-170. |
[53] | ZHONG M L, LIU Y T, XIE X M. Self-healable, super tough graphene oxide/poly(acrylic acid) nanocomposite hydrogels facilitated by dual cross-linking effects through dynamic ionic interactions[J]. Journal of Materials Chemistry B, 2015, 3(19):4001-4008. |
[54] | ROBINSON J T, TABAKMAN S M, LIANG Y Y, et al. Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy[J]. Journal of the American Chemical Society, 2011, 133(17):6825-6831. |
[55] | LI M, YANG X J, REN J S, et al. Using graphene oxide high near-infrared absorbance for photothermal treatment of Alzheimer's disease[J]. Advanced Materials, 2012, 24(13):1722-1728. |
[56] | KIM D, LEE H S, YOON J. Remote control of volume phase transition of hydrogels containing graphene oxide by visible light irradiation[J]. RSC Advances, 2014, 4(48):25379-25383. |
[57] | SHI K, LIU Z, WEI Y Y, et al. Near-infrared light-responsive poly(N-isopropylacrylamide)/graphene oxide nanocomposite hydrogels with ultrahigh tensibility[J]. ACS Applied Materials & Interfaces, 2015, 7(49):27289-27298. |
[58] | WANG E, DESAI M S, LEE S W. Light-controlled graphene-elastin composite hydrogel actuators[J]. Nano Letters, 2013, 13(6):2826-2830. |
[59] | ZHANG E Z, WANG T, HONG W, et al. Infrared-driving actuation based on bilayer graphene oxide-poly(N-isopropylacrylamide) nanocomposite hydrogels[J]. Journal of Materials Chemistry A, 2014, 2(37):15633-15639. |
[60] | MA C X, LE X X, TANG X L, et al. A multiresponsive anisotropic hydrogel with macroscopic 3D complex deformations[J]. Advanced Functional Materials, 2016, 26(47):8670-8676. |
[61] | HOU C Y, ZHANG Q H, WANG H Z, et al. Functionalization of PNIPAAm microgels using magnetic graphene and their application in microreactors as switch materials[J]. Journal of Materials Chemistry, 2011, 21(28):10512-10517. |
[62] | ZHANG N N, LI R Q, ZHANG L, et al. Actuator materials based on graphene oxide/polyacrylamide composite hydrogels prepared by in situ polymerization[J]. Soft Matter, 2011, 7(16):7231-7239. |
[63] | JIAO T F, LIU Y Z, WU Y T, et al. Facile and scalable preparation of graphene oxide-based magnetic hybrids for fast and highly efficient removal of organic dyes[J]. Scientific Reports, 2015, 5:12451. |
[64] | LO C W, ZHU D F, JIANG H R, et al. An infrared-light responsive graphene-oxide incorporated poly(N-isopropylacrylamide) hydrogel nanocomposite[J]. Soft Matter, 2011, 7(12):5604-5609. |
[65] | ANNABI N, NICHOL J W, ZHONG X, et al. Controlling the porosity and microarchitecture of hydrogels for tissue engineering[J]. Tissue Engineering Part B-Reviews, 2010, 16(4):371-383. |
[66] | MADHUMATHI K, SHALUMON K T, RANI V V D, et al. Wet chemical synthesis of chitosan hydrogel-hydroxyapatite composite membranes for tissue engineering applications[J]. International Journal of Biological Macromolecules, 2009, 45(1):12-15. |
[67] | LI H, ZHAO L, CHEN X D, et al. Swelling of whey and egg white protein hydrogels with stranded and particulate microstructures[J]. International Journal of Biological Macromolecules, 2016, 83:152-159. |
[68] | LI W, WANG J S, REN J S, et al. 3D graphene oxide-polymer hydrogel:near-infrared light-triggered active scaffold for reversible cell capture and on-demand release[J]. Advanced Materials, 2013, 25(46):6737-6743. |
[69] | PIAO Y Z, CHEN B Q. Characterization, formation mechanisms, and pH-sensitive drug release behavior[J]. Journal of Polymer Science Part B-Polymer Physics, 2014, 53(5):356-367. |
[70] | SHIN S R, AGHAEI-GHAREH-BOLAGH B, DANG T T, et al. Cell-laden microengineered and mechanically tunable hybrid hydrogels of gelatin and graphene oxide[J]. Advanced Materials, 2013, 25(44):6385-6391. |
[71] | PARK S, LEE K S, BOZOKLU G, et al. Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking[J]. ACS Nano, 2008, 2(3):572-578. |
[72] | CHEN Y Q, CHEN L B, BAI H, et al. Graphene oxide-chitosan composite hydrogels as broad-spectrum adsorbents for water purification[J]. Journal of Materials Chemistry A, 2013, 1(6):1992-2001. |
[73] | PARSAMANESH M, TEHRANI A D, MANSOURPANAH Y. Supramolecular hydrogel based on cyclodextrin modified GO as a potent natural organic matter absorbent[J]. European Polymer Journal, 2017, 92:126-136. |
[74] | ROTZETTER A C C, SCHUMACHER C M, BUBENHOFER S B, et al. Thermoresponsive polymer induced sweating surfaces as an efficient way to passively cool buildings[J]. Advanced Materials, 2012, 24(39):5352-5356. |
[75] | LI D H W, LAM J C, LAU C C S, et al. Lighting and energy performance of solar film coating in air-conditioned cellular offices[J]. Renewable Energy, 2004, 29(6):921-937. |
[76] | BAETENS R, JELLE B P, GUSTAVSEN A. Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings:a state-of-the-art review[J]. Solar Energy Materials and Solar Cells, 2010, 94(2):87-105. |
[77] | CHOU H T, CHEN Y C, LEE C Y, et al. Switchable transparency of dual-controlled smart glass prepared with hydrogel-containing graphene oxide for energy efficiency[J]. Solar Energy Materials and Solar Cells, 2017, 166:45-51. |
[1] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[2] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[3] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[4] | 邢美波, 张中天, 景栋梁, 张洪发. 磁调控水基碳纳米管协同多孔材料强化相变储/释能特性[J]. 化工学报, 2023, 74(7): 3093-3102. |
[5] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[6] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[7] | 张澳, 罗英武. 低模量、高弹性、高剥离强度丙烯酸酯压敏胶[J]. 化工学报, 2023, 74(7): 3079-3092. |
[8] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[9] | 刘杰, 吴立盛, 李锦锦, 罗正鸿, 周寅宁. 含乙烯基胺酯键聚醚类可逆交联聚合物的制备及性能研究[J]. 化工学报, 2023, 74(7): 3051-3057. |
[10] | 蔡斌, 张效林, 罗倩, 党江涛, 左栗源, 刘欣梅. 导电薄膜材料的研究进展[J]. 化工学报, 2023, 74(6): 2308-2321. |
[11] | 董茂林, 陈李栋, 黄六莲, 吴伟兵, 戴红旗, 卞辉洋. 酸性助水溶剂制备木质纳米纤维素及功能应用研究进展[J]. 化工学报, 2023, 74(6): 2281-2295. |
[12] | 龙臻, 王谨航, 任俊杰, 何勇, 周雪冰, 梁德青. 离子液体协同PVCap抑制天然气水合物生成实验研究[J]. 化工学报, 2023, 74(6): 2639-2646. |
[13] | 崔张宁, 胡紫璇, 吴雷, 周军, 叶干, 刘田田, 张秋利, 宋永辉. 可降解纤维素基材料的耐水性能研究进展[J]. 化工学报, 2023, 74(6): 2296-2307. |
[14] | 杨琴, 秦传鉴, 李明梓, 杨文晶, 赵卫杰, 刘虎. 用于柔性传感的双形状记忆MXene基水凝胶的制备及性能研究[J]. 化工学报, 2023, 74(6): 2699-2707. |
[15] | 刘远超, 蒋旭浩, 邵钶, 徐一帆, 钟建斌, 李耑. 几何尺寸及缺陷对石墨炔纳米带热输运特性的影响[J]. 化工学报, 2023, 74(6): 2708-2716. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||