[1] |
EDA G, CHHOWALLA M. Chemically derived graphene oxide:towards large-area thin-film electronics and optoelectronics[J]. Advanced Materials, 2010, 22(22):2392-415.
|
[2] |
LAVEK R K, NANDI A K. A review on synthesis and properties of polymer functionalized graphene[J]. Polymer, 2013, 54(19):5087-5103.
|
[3] |
MOHAN V B, BROWN R, JAYARAMAN K, et al. Characterisation of reduced graphene oxide:effects of reduction variables on electrical conductivity[J]. Materials Science & Engineering B, 2015, 193(2):49-60.
|
[4] |
GEORGAKILAS V, OTYEPKA M, BOURLINOS A B, et al. Functionalization of graphene:covalent and non-covalent approaches, derivatives and applications[J]. Chemical Reviews, 2012, 112(11):6156-6214.
|
[5] |
RAY S C. Chapter 2. Application and uses of graphene oxide and reduced graphene oxide[M]//Applications of Graphene and GrapheneOxide Based Nanomaterials. Elsevier Inc., 2015:39-55.
|
[6] |
SHIM G, KIM M G, PARK J Y, et al. Graphene-based nanosheets for delivery of chemotherapeutics and biological drugs[J]. Advanced Drug Delivery Reviews, 2016, 105(Part B):205-227.
|
[7] |
STANKOVICH S, DIKIN D A, PINER R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon, 2007, 45(7):1558-1565.
|
[8] |
LI C, SHI G. Functional gels based on chemically modified graphenes[J]. Advanced Materials, 2014, 26(24):3992-4012.
|
[9] |
AUNKOR M T, MAHBUBUL I M, SAIDUR R, et al. The green reduction of graphene oxide[J]. RSC Advances, 2016, 6(33):27807-27828.
|
[10] |
何大方, 吴健, 刘战剑, 等. 面向应用的石墨烯制备研究进展[J]. 化工学报, 2015, 66(8):2888-2894. HE D F, WU J, LIU Z J, et al. Recent advances in preparation of graphene for applications[J]. CIESC Journal, 2015, 66(8):2888-2894.
|
[11] |
PARK S, AN J, POTTS J R, et al. Hydrazine-reduction of graphite-and graphene oxide[J]. Carbon, 2011, 49(9):3019-3023.
|
[12] |
HAFIZ S M, RITIKOS R, WHITCHER T J, et al. A practical carbon dioxide gas sensor using room-temperature hydrogen plasma reduced graphene oxide[J]. Sensors & Actuators B Chemical, 2014, 193(3):692-700.
|
[13] |
BAI Y F, ZHANG Y F, ZHOU A W, et al. Self-assembly of a thin highly reduced graphene oxide film and its high electrocatalytic activity[J]. Nanotechnology, 2014, 25(40):405601.
|
[14] |
CHEN C, ZHANG Q, YANG M, et al. Structural evolution during annealing of thermally reduced graphene nanosheets for application in supercapacitors[J]. Carbon, 2012, 50(10):3572-3584.
|
[15] |
CAO J, WANG Y, XIAO P, et al. Hollow graphene spheres selfassembled from graphene oxide sheets by a one-step hydrothermal process[J]. Carbon, 2013, 56(5):389-391.
|
[16] |
SILVA K K H D, HUANG H H, JOSHI R K, et al. Chemical reduction of graphene oxide using green reductants[J]. Carbon, 2017, 119:190-199.
|
[17] |
PEI S, CHENG H. The reduction of graphene oxide[J]. Carbon, 2012, 50(9):3210-3228.
|
[18] |
ZHOU Y, BAO Q L, TANG L A L, et al. Hydrothermal dehydration for the "green" reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties[J]. Chemistry of Materials, 2009, 21(13):2950-2956.
|
[19] |
WAN W C, ZHANG F, YU S, et al. Hydrothermal formation of graphene aerogel for oil sorption:the role of reducing agent, reaction time and temperature[J]. New Journal of Chemistry, 2016, 40(4):3040-3046.
|
[20] |
SHEN J F, YAN B, SHI M, et al. One step hydrothermal synthesis of TiO2-reduced graphene oxide sheets[J]. Journal of Materials Chemistry, 2011, 21(10):3415-3421.
|
[21] |
李吉, 魏彤, 闫俊, 等. 石墨烯纳米片/CoS2复合材料的制备及其在超级电容器中的应用[J]. 化工学报, 2014, 65(7):2849-2854. LI J, WEI T, YAN J, et al. Preparation of graphene nanosheet/CoS2 composite and its application in supercapacitors[J]. CIESC Journal, 2014, 65(7):2849-2854.
|
[22] |
贾海鹏, 苏勋家, 侯根良, 等. 石墨烯/聚合物纳米复合材料制备与微波吸收性能研究进展[J]. 化工学报, 2012, 63(6):1663-1668. JIA H P, SU X J, HOU G L, et al. Progress of fabrication and microwave absorption capacity of graphene/polymer nanocomposites[J]. CIESC Journal, 2012, 63(6):1663-1668.
|
[23] |
刘芳, 樊丰涛, 吕玉翠, 等. 石墨烯/TiO2复合材料光催化降解有机污染物的研究进展[J]. 化工学报, 2016, 67(5):1635-1643. LIU F, FAN F T, LÜ Y C, et al. Research progress on photocatalytic degradation of organic pollutants by graphene/TiO2 composite materials[J]. CIESC Journal, 2016, 67(5):1635-1643.
|
[24] |
LI C, SHI Y X, CHEN X, et al. Controlled synthesis of graphite oxide:formation process, oxidation kinetic sand optimized conditions[J]. Chemical Engineering Science, 2018, 176:319-328.
|
[25] |
HE D F, SHEN L M, ZHANG X Y, et al. An efficient and eco-friendly solution-chemical route for preparation of ultrastable reduced graphene oxide suspensions[J]. AIChE Journal, 2014, 60(8):2757-2764.
|
[26] |
KRISHNAMOORTHY K, VEERAPANDⅡAN M, YUN K, et al. The chemical and structural analysis of graphene oxide with different degrees of oxidation[J]. Carbon, 2013, 53(1):38-49.
|
[27] |
KUMAR P V, BARDHAN N M, TONGAY S, et al. Scalable enhancement of graphene oxide properties by thermally driven phase transformation[J]. Nature Chemistry, 2014, 6(2):151-158.
|
[28] |
ABRAHAM J, VASU K S, WILLIAMS C D, et al. Tunable sieving of ions using graphene oxide membranes[J]. Nature Nanotechnology, 2017, 12(6):546-550.
|
[29] |
FERRARI A C, BASKO D M. Raman spectroscopy as a versatile tool for studying the properties of graphene[J]. Nature Nanotechnology, 2013, 8(4):235-246.
|
[30] |
HU K, XIE X, SZKOPEK T, et al. Understanding hydrothermally reduced graphene oxide hydrogels:from reaction products to hydrogel properties[J]. Chemistry of Materials, 2016, 28(6):1756-1768.
|
[31] |
MALARD L M, PIMENTA M A, DRESSELHAUS G, et al. Raman spectroscopy in graphene[J]. Physics Reports, 2009, 473(5):51-87.
|