化工学报 ›› 2023, Vol. 74 ›› Issue (8): 3513-3521.DOI: 10.11949/0438-1157.20230595
胡亚丽(), 胡军勇(
), 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源
收稿日期:
2023-06-19
修回日期:
2023-08-21
出版日期:
2023-08-25
发布日期:
2023-10-18
通讯作者:
胡军勇
作者简介:
胡亚丽(1998—),女,硕士研究生,m15735267587@163.com
基金资助:
Yali HU(), Junyong HU(
), Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG
Received:
2023-06-19
Revised:
2023-08-21
Online:
2023-08-25
Published:
2023-10-18
Contact:
Junyong HU
摘要:
逆电渗析(reverse electrodialysis,RED)热机能够将低品位热能有效地转换为电能。作为热机的核心部件,RED电堆的性能直接影响热机的整体能量转换性能。为提升RED热机能量转换效率,通过开发一种由氯化锂、氯化铵与水混合形成的三元工质用于RED电堆,并与常规氯化钠水溶液对比探讨了进、出口溶液电导率和电化学性能。首先,测试了不同比例氯化锂与氯化铵混合水溶液作为RED电堆工质的电导率,并根据相关性能指标筛选出两种盐的最佳质量摩尔浓度比例为2∶8。然后,将此最佳比例下的溶液应用于RED。通过实验与NaCl水溶液对比研究了改变浓、稀溶液浓度对电堆进、出口溶液电导率和电堆内阻的影响。结果表明,适当增加进料浓、稀溶液浓度有利于降低RED电堆内阻,从而改善电堆性能。
中图分类号:
胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521.
Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine[J]. CIESC Journal, 2023, 74(8): 3513-3521.
名称 | 相对分子质量 | 纯度 | 厂家 |
---|---|---|---|
氯化锂LiCl | 94.00 | AR,99.0% | 上海麦克林生化科技 |
氯化铵NH4Cl | 98.50 | AR,99.5% | 上海麦克林生化科技 |
氯化钠NaCl | 58.44 | AR,≥99.5% | 天津大茂化学试剂厂 |
铁氰化钾K3[Fe(CN)6] | 329.24 | AR,99.5% | 上海阿拉丁生化科技 |
亚铁氰化钾K4[Fe(CN)6] | 422.39 | AR,99.0% | 天津大茂化学试剂厂 |
表1 无机盐基本参数
Table 1 Basic parameters of mineral salts
名称 | 相对分子质量 | 纯度 | 厂家 |
---|---|---|---|
氯化锂LiCl | 94.00 | AR,99.0% | 上海麦克林生化科技 |
氯化铵NH4Cl | 98.50 | AR,99.5% | 上海麦克林生化科技 |
氯化钠NaCl | 58.44 | AR,≥99.5% | 天津大茂化学试剂厂 |
铁氰化钾K3[Fe(CN)6] | 329.24 | AR,99.5% | 上海阿拉丁生化科技 |
亚铁氰化钾K4[Fe(CN)6] | 422.39 | AR,99.0% | 天津大茂化学试剂厂 |
型号 | 厚度 δ ×104/m | 选择 透过性/% | 电阻/ (Ω∙cm2) |
---|---|---|---|
Fujifilm Type 10 AEM | 1.25 | 94 | 1.7 |
Fujifilm Type 10 CEM | 1.35 | 98.5 | 2.0 |
表2 IEMs基本参数
Table 2 Basic parameters of IEMs
型号 | 厚度 δ ×104/m | 选择 透过性/% | 电阻/ (Ω∙cm2) |
---|---|---|---|
Fujifilm Type 10 AEM | 1.25 | 94 | 1.7 |
Fujifilm Type 10 CEM | 1.35 | 98.5 | 2.0 |
型号 | 材料 | 开孔面积/% | 孔隙率/% | |||
---|---|---|---|---|---|---|
DPP32 | PET | 1.50 | 68 | 79.2 | 3.16 | 1.0 |
表3 隔垫的相关参数
Table 3 Relevant parameters of the spacers
型号 | 材料 | 开孔面积/% | 孔隙率/% | |||
---|---|---|---|---|---|---|
DPP32 | PET | 1.50 | 68 | 79.2 | 3.16 | 1.0 |
1 | Xia J B, Eigenberger G, Strathmann H, et al. Acid-base flow battery, based on reverse electrodialysis with bi-polar membranes: stack experiments[J]. Processes, 2020, 8(1): 99. |
2 | 陈霞, 蒋晨啸, 汪耀明, 等. 反向电渗析在新能源及环境保护应用中的研究进展[J]. 化工学报, 2018, 69(1): 188-202. |
Chen X, Jiang C X, Wang Y M, et al. Advances in reverse electrodialysis and its applications on renewable energy & environment protection[J]. CIESC Journal, 2018, 69(1): 188-202. | |
3 | 邓会宁, 田明, 杨秀丽, 等. 反电渗析法海洋盐差电池的结构优化与能量分析[J]. 化工学报, 2015, 66(5): 1919-1924. |
Deng H N, Tian M, Yang X L, et al. Structure optimization and energy analysis of reverse electrodialysis to recover energy of oceanic salinity gradient[J]. CIESC Journal, 2015, 66(5): 1919-1924. | |
4 | Tian H L, Wang Y, Pei Y S, et al. Unique applications and improvements of reverse electrodialysis: a review and outlook[J]. Applied Energy, 2020, 262: 114482. |
5 | Tamburini A, La Barbera G, Cipollina A, et al. CFD prediction of scalar transport in thin channels for reverse electrodialysis[J]. Desalination and Water Treatment, 2015, 55(12): 3424-3445. |
6 | Altaee A, Zaragoza G, Drioli E, et al. Evaluation the potential and energy efficiency of dual stage pressure retarded osmosis process[J]. Applied Energy, 2017, 199: 359-369. |
7 | Altaee A, Zhou J, Alhathal Alanezi A, et al. Pressure retarded osmosis process for power generation: feasibility, energy balance and controlling parameters[J]. Applied Energy, 2017, 206: 303-311. |
8 | Prante J L, Ruskowitz J A, Childress A E, et al. RO-PRO desalination: an integrated low-energy approach to seawater desalination[J]. Applied Energy, 2014, 120: 104-114. |
9 | Kim H, Yang S, Choi J, et al. Optimization of the number of cell pairs to design efficient reverse electrodialysis stack[J]. Desalination, 2021, 497: 114676. |
10 | 刘子健, 鹿丁, 白银, 等. 反向电渗析热机发生单元研究进展[J]. 科学通报, 2021, 66(30): 3811-3821. |
Liu Z J, Lu D, Bai Y, et al. Progress on the regeneration unit of a reverse electrodialysis heat engine[J]. Chinese Science Bulletin, 2021, 66(30): 3811-3821. | |
11 | Vermaas D A, Veerman J, Saakes M, et al. Influence of multivalent ions on renewable energy generation in reverse electrodialysis[J]. Energy & Environmental Science, 2014, 7(4): 1434-1445. |
12 | Simões C, Pintossi D, Saakes M, et al. Electrode segmentation in reverse electrodialysis: improved power and energy efficiency[J]. Desalination, 2020, 492: 114604. |
13 | Tufa R A, Piallat T, Hnát J, et al. Salinity gradient power reverse electrodialysis: cation exchange membrane design based on polypyrrole-chitosan composites for enhanced monovalent selectivity[J]. Chemical Engineering Journal, 2020, 380: 122461. |
14 | Li J B, Zhang C, Liu K, et al. Experimental study on salinity gradient energy recovery from desalination seawater based on RED[J]. Energy Conversion and Management, 2021, 244: 114475. |
15 | Olsson M, Wick G L, Isaacs J D. Salinity gradient power: utilizing vapor pressure differences[J]. Science, 1979, 206(4417): 452-454. |
16 | Olsson M S. Salinity-gradient vapor-pressure power conversion[J]. Energy, 1982, 7(3): 237-246. |
17 | Tufa R A, Pawlowski S, Veerman J, et al. Progress and prospects in reverse electrodialysis for salinity gradient energy conversion and storage[J]. Applied Energy, 2018, 225: 290-331. |
18 | Tamburini A, Tedesco M, Cipollina A, et al. Reverse electrodialysis heat engine for sustainable power production[J]. Applied Energy, 2017, 206: 1334-1353. |
19 | Giacalone F, Vassallo F, Scargiali F, et al. The first operating thermolytic reverse electrodialysis heat engine[J]. Journal of Membrane Science, 2020, 595: 117522. |
20 | Micari M, Cipollina A, Giacalone F, et al. Towards the first proof of the concept of a reverse electrodialysis-membrane distillation heat engine[J]. Desalination, 2019, 453: 77-88. |
21 | 殷纪强, 于泽庭, 张承刚, 等. 一种低温余热驱动的新型功冷联供系统[J]. 中国电机工程学报, 2018, 38(9): 2679-2686, 2837. |
Yin J Q, Yu Z T, Zhang C G, et al. A novel power/cooling cogeneration system driven by low-grade waste heat[J]. Proceedings of the CSEE, 2018, 38(9): 2679-2686, 2837. | |
22 | 徐士鸣, 张凯, 吴曦, 等. 电流与浓差对逆电渗析电堆内质量传递的影响[J]. 化工学报, 2018, 69(10): 4206-4215. |
Xu S M, Zhang K, Wu X, et al. Influence of current density and concentration difference between solutions on mass transfer in reverse electro-dialysis stack[J]. CIESC Journal, 2018, 69(10): 4206-4215. | |
23 | 吴曦, 徐士鸣, 吴德兵, 等. 逆电渗析法热-电转换系统循环工质匹配准则[J]. 化工学报, 2016, 67(S2): 326-332. |
Wu X, Xu S M, Wu D B, et al. Methodology of assessing working mediums availability for a novel heat-power conversion system with reverse electrodialysis technology[J]. CIESC Journal, 2016, 67(S2): 326-332. | |
24 | Kim D H, Park B H, Kwon K, et al. Modeling of power generation with thermolytic reverse electrodialysis for low-grade waste heat recovery[J]. Applied Energy, 2017, 189: 201-210. |
25 | 吴德兵, 徐士鸣, 吴曦, 等. 不同单价电解质水溶液对逆电渗析电堆工作特性的影响[J]. 化工进展, 2019, 38(6): 2738-2745. |
Wu D B, Xu S M, Wu X, et al. Influences of different monovalent electrolyte aqueous solution on the performance characteristics of reverse electrodialysis stack[J]. Chemical Industry and Engineering Progress, 2019, 38(6): 2738-2745. | |
26 | 徐士鸣, 吴德兵, 吴曦, 等. 氯化锂溶液为工质的溶液浓差发电实验研究[J]. 大连理工大学学报, 2017, 57(4): 337-344. |
Xu S M, Wu D B, Wu X, et al. Experimental study of solution concentration difference power generation with lithium chloride solution as working fluid[J]. Journal of Dalian University of Technology, 2017, 57(4): 337-344. | |
27 | 王卫东. LiCl在异丙醇中热力学性质的研究[J]. 盐湖研究, 2007, 15(3): 28-32. |
Wang W D. Study on thermodynamic properties of LiCl in 2-propanol solvent[J]. Journal of Salt Lake Research, 2007, 15(3): 28-32. | |
28 | Chen H, Wang L S, Jiang B, et al. Measurements of conductivity for low concentration strongelectrolytes in organic solvents (Ⅰ): LiBr, LiCl, and LiNO3 in alcohols[J]. Chinese Journal of Chemical Engineering, 2012, 20(5): 1024-1033. |
29 | 龚英. 金属盐-有机溶剂-水体系电导性和电转换性研究[D]. 大连: 大连理工大学, 2019. |
Gong Y. Electrical conductivity and electrical convertibility of the metal salt-organic solvent-water systems[D].Dalian: Dalian University of Technology, 2019. | |
30 | Wu X, Xu S M, Wu D B, et al. Electric conductivity and electric convertibility of potassium acetate in water, ethanol, 2,2,2-trifluoroethanol, 2-propanol and their binary blends[J]. Chinese Journal of Chemical Engineering, 2018, 26(12): 2581-2591. |
31 | Wu X, Gong Y, Xu S M, et al. Electrical conductivity of lithium chloride, lithium bromide, and lithium iodide electrolytes in methanol, water, and their binary mixtures[J]. Journal of Chemical & Engineering Data, 2019, 64(10): 4319-4329. |
32 | Micari M, Bevacqua M, Cipollina A, et al. Effect of different aqueous solutions of pure salts and salt mixtures in reverse electrodialysis systems for closed-loop applications[J]. Journal of Membrane Science, 2018, 551: 315-325. |
33 | Vermaas D A, Saakes M, Nijmeijer K. Doubled power density from salinity gradients at reduced intermembrane distance[J]. Environmental Science & Technology, 2011, 45(16): 7089-7095. |
34 | Mei Y, Tang C Y. Recent developments and future perspectives of reverse electrodialysis technology: a review[J]. Desalination, 2018, 425: 156-174. |
35 | 王一玮. 反向电渗析盐差膜堆系统产电特性及其影响因素研究[D]. 西安: 西安理工大学, 2022. |
Wang Y W. Investigation on the power generation performance of a salt-difference stack system by reverse electrodialysis and its influencing factors[D].Xi'an: Xi'an University of Technology, 2022. | |
36 | Weinstein J N, Leitz F B. Electric power from differences in salinity: the dialytic battery[J]. Science, 1976, 191(4227): 557-559. |
37 | Post J W, Hamelers H V M, Buisman C J N. Energy recovery from controlled mixing salt and fresh water with a reverse electrodialysis system[J]. Environmental Science & Technology, 2008, 42(15): 5785-5790. |
[1] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[2] | 吴延鹏, 李晓宇, 钟乔洋. 静电纺丝纳米纤维双疏膜油性细颗粒物过滤性能实验分析[J]. 化工学报, 2023, 74(S1): 259-264. |
[3] | 赵亚欣, 张雪芹, 王荣柱, 孙国, 姚善泾, 林东强. 流穿模式离子交换层析去除单抗聚集体[J]. 化工学报, 2023, 74(9): 3879-3887. |
[4] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[5] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[6] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[7] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[8] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[9] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[10] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[11] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[12] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[13] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[14] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
[15] | 屈园浩, 邓文义, 谢晓丹, 苏亚欣. 活性炭/石墨辅助污泥电渗脱水研究[J]. 化工学报, 2023, 74(7): 3038-3050. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 537
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||||||||||||||||||