化工学报 ›› 2018, Vol. 69 ›› Issue (11): 4553-4565.DOI: 10.11949/j.issn.0438-1157.20180628
梁淼1,2, 余涛1, 高翔3, 苏荣欣1, 齐崴1, 何志敏1
收稿日期:
2018-06-11
修回日期:
2018-07-23
出版日期:
2018-11-05
发布日期:
2018-11-05
通讯作者:
苏荣欣
基金资助:
国家自然科学基金项目(51473115);化学工程联合国家重点实验室探索课题项目(SKL-ChE-14T04);天津市自然科学基金重点项目(16JCZDJC37900)。
LIANG Miao1,2, YU Tao1, GAO Xiang3, SU Rongxin1, QI Wei1, HE Zhimin1
Received:
2018-06-11
Revised:
2018-07-23
Online:
2018-11-05
Published:
2018-11-05
Supported by:
supported by the National Natural Science Foundation of China (51473115), the State Key Laboratory of Chemical Engineering (SKL-ChE-14T04) and the Natural Science Foundation of Tianjin City (16JCZDJC37900).
摘要:
将蛋白分子及其自组装体作为模板用于功能性金属纳米材料合成吸引了研究者的广泛关注。蛋白质及其自组装体形态结构独特多样,具有特异性分子识别及仿生矿化能力,在纳米材料形成过程中可发挥结构导向及形貌控制作用,以其为模板构建的蛋白-金属纳米复合材料在催化转化、生物传感、医学成像等领域具有广阔的应用前景。本文基于蛋白质及其组装体的结构特征差异,综述了近些年在以蛋白质单亚基结构、蛋白多亚基超组装结构及蛋白三维晶体结构为模板的金属纳米复合材料构建研究方面取得的进展,并对其未来的研究发展方向进行了展望。
中图分类号:
梁淼, 余涛, 高翔, 苏荣欣, 齐崴, 何志敏. 基于蛋白及其组装体的金属纳米复合材料构建[J]. 化工学报, 2018, 69(11): 4553-4565.
LIANG Miao, YU Tao, GAO Xiang, SU Rongxin, QI Wei, HE Zhimin. Fabrication of metal nanocomposites based on proteins and their self-assemblies as templates[J]. CIESC Journal, 2018, 69(11): 4553-4565.
[1] | VOET A R, TAME J R. Protein-templated synthesis of metal-based nanomaterials[J]. Current Opinion in Biotechnology, 2017, 46(1):14-19. |
[2] | LI N, TITTL A, YUE S, et al. DNA-assembled bimetallic plasmonic nanosensors[J]. Light:Science & Applications, 2014, 3(1):e226. |
[3] | 梁淼. 金属纳米晶@多孔蛋白的复合材料制备及其催化应用[D]. 天津:天津大学, 2014. LIANG M. Fabrication and catalytic application of metal nanocrystals within porous protein-based materials[D]. Tianjin:Tianjin University, 2014. |
[4] | JONES O G, MEZZENGA R. Inhibiting, promoting, and preserving stability of functional protein fibrils[J]. Soft Matter, 2012, 8(4):876-895. |
[5] | LAGZIEL-SIMIS S, COHEN-HADAR N, MOSCOVICH-DAGAN H, et al. Protein-mediated nanoscale biotemplating[J]. Current Opinion in Biotechnology, 2006, 17(6):569-573. |
[6] | ABE S, MAITY B, UENO T. Design of a confined environment using protein cages and crystals for the development of biohybrid materials[J]. Chemical Communications, 2016, 52(39):6496-6512. |
[7] | LI C, CHEN H, CHEN B, et al. Highly fluorescent gold nanoclusters stabilized by food proteins:from preparation to application in detection of food contaminants and bioactive nutrients[J]. Critical Reviews in Food Science and Nutrition, 2016, 58(5):1-11. |
[8] | PALMAL S, JANA N R. Gold nanoclusters with enhanced tunable fluorescence as bioimaging probes[J]. Wiley Interdisciplinary Reviews:Nanomedicine and Nanobiotechnology, 2014, 6(1):102-110. |
[9] | 杨维涛, 郭伟圣, 张兵波, 等. 基于蛋白和多肽为模板的贵金属纳米簇合成研究[J]. 化学学报, 2014, 72(12):1209-1217. YANG W T, GUO W S, ZHANG B B, et al. Synthesis of noble metal nanoclusters based on protein and peptide as a template[J]. Journal of the Chinese Chemical Society, 2014, 72(12):1209-1217. |
[10] | WANG X, LI Y, ZHONG C. Amyloid-directed assembly of nanostructures and functional devices for bionanoelectronics[J]. Journal of Materials Chemistry B, 2015, 3(25):4953-4958. |
[11] | GOSWAMI N, ZHENG K, XIE J. Bio-NCs the marriage of ultrasmall metal nanoclusters with biomolecules[J]. Nanoscale, 2014, 6(22):13328-13347. |
[12] | MAITY B, FUJITA K, UENO T. Use of the confined spaces of apo-ferritin and virus capsids as nanoreactors for catalytic reactions[J]. Current Opinion in Chemical Biology, 2015, 25(1):88-97. |
[13] | MELDRUM F C, WADE V J, NIMMO D L, et al. Synthesis of inorganic nanophase materials in supramolecular protein cages[J]. Nature, 1991, 349(6311):684-687. |
[14] | KASYUTICH O, ILARI A, FIORILLO A, et al. Silver ion incorporation and nanoparticle formation inside the cavity of pyrococcus furiosus ferritin:structural and size-distribution analyses[J]. Journal of the American Chemical Society, 2010, 132(10):3621-3627. |
[15] | SHIN Y, DOHNALKOVA A, LIN Y. Preparation of homogeneous gold-silver alloy nanoparticles using the apoferritin cavity as a nanoreactor[J]. The Journal of Physical Chemistry C, 2010, 114(13):5985-5989. |
[16] | UENO T, SUZUKI M, GOTO T, et al. Size-selective olefin hydrogenation by a Pd nanocluster provided in an apo-ferritin cage[J]. Angewandte Chemie International Edition, 2004, 43(19):2527-2530. |
[17] | FAN R, CHEW S W, CHEONG V V, et al. Fabrication of gold nanoparticles inside unmodified horse spleen apoferritin[J]. Small, 2010, 6(14):1483-1487. |
[18] | ZHANG W, LIU X, WALSH D, et al. Caged-protein-confined bimetallic structural assemblies with mimetic peroxidase activity[J]. Small, 2012, 8(19):2948-2953. |
[19] | XIE J, LEE J Y, DANIEL I C W. Synthesis of single-crystalline gold nanoplates in aqueous solutions through biomineralization by serum albumin protein[J]. The Journal of Physical Chemistry C, 2007, 111(28):10226-10232. |
[20] | CHEN L, WANG N, WANG X, et al. Protein-directed in situ synthesis of platinum nanoparticles with superior peroxidase-like activity, and their use for photometric determination of hydrogen peroxide[J]. Microchimica Acta, 2013, 180(15/16):1517-1522. |
[21] | SHARMA A K, PANDEY S, KHAN M S, et al. Protein stabilized fluorescent gold nanocubes as selective probe for alkaline phosphatase via inner filter effect[J]. Sensors and Actuators B:Chemical, 2018, 259(1):83-89. |
[22] | CHAKRABORTY I, FELIU N, ROY S, et al. Protein-mediated shape control of silver nanoparticles[J]. Bioconjugate Chemistry, 2018, 29(4):1261-1265. |
[23] | HART C, ABULADEL N, BEE M, et al. Protein-templated gold nanoparticle synthesis:protein organization, controlled gold sequestration, and unexpected reaction products[J]. Dalton Transactions, 2017, 46(47):16465-16473. |
[24] | WILLNER I, BARON R, WILLNERR B. Growing metal nanoparticles by enzymes[J]. Advanced Materials, 2010, 18(9):1109-1120. |
[25] | EBY D M, SCHAEUBLIN N M, FARRINGTON K E, et al. Lysozyme catalyzes the formation of antimicrobial silver nanoparticles[J]. ACS Nano, 2009, 3(4):984-994. |
[26] | SHARMA B, MANDANI S, SARMA T K. Biogenic growth of alloys and core-shell nanostructures using urease as a nanoreactor at ambient conditions[J]. Scientific Reports, 2013, 3(37):2601. |
[27] | ZOU L, QI W, HUANG R, et al. Green synthesis of a gold nanoparticle-nanocluster composite nanostructures using trypsin as linking and reducing agents[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(11):1398-1404. |
[28] | ROTH K L, GENG X, GROVE T Z. Bioinorganic interface:mechanistic studies of protein-directed nanomaterial synthesis[J]. The Journal of Physical Chemistry C, 2016, 120(20):10951-10960. |
[29] | AN D, SU J, WEBER J K, et al. A peptide-coated gold nanocluster exhibits unique behavior in protein activity inhibition[J]. Journal of the American Chemical Society, 2015, 137(26):8412-8418. |
[30] | XIE J, ZHENG Y, YING J Y. Protein-directed synthesis of highly fluorescent gold nanoclusters[J]. Journal of the American Chemical Society, 2009, 131(3):888-889. |
[31] | YU Y, LUO Z, TEO C S, et al. Tailoring the protein conformation to synthesize different-sized gold nanoclusters[J]. Chemical Communications, 2013, 49(84):9740-9742. |
[32] | CHUANG K T, LIN Y W. Microwave-assisted formation of gold nanoclusters capped in bovine serum albumin and exhibiting red or blue emission[J]. The Journal of Physical Chemistry C, 2017, 121(48):26997-27003. |
[33] | XU Y, SHERWOOD J, QIN Y, et al. The role of protein characteristics in the formation and fluorescence of Au nanoclusters[J]. Nanoscale, 2014, 6(3):1515-1524. |
[34] | ZANG J, LI C, ZHOU K, et al. Nanomolar Hg2+ detection using β-lactoglobulin-stabilized fluorescent gold nanoclusters in beverage and biological media[J]. Analytical Chemistry, 2016, 88(20):10275-10283. |
[35] | XAVIER P L, CHAUDHARI K, BAKSI A, et al. Protein-protected luminescent noble metal quantum clusters:an emerging trend in atomic cluster nanoscience[J]. Nano Reviews, 2012, 3(1):19-24. |
[36] | YU Y, NEW S Y, XIE J, et al. Protein-based fluorescent metal nanoclusters for small molecular drug screening[J]. Chemical Communications, 2014, 50(89):13805-13808. |
[37] | KANBAK-AKSU S, NAHID H M, HAGEN W R, et al. Ferritin-supported palladium nanoclusters:selective catalysts for aerobic oxidations in water[J]. Chemical Communications, 2012, 48(46):5745-5747. |
[38] | SUN C, YANG H, YUAN Y, et al. Controlling assembly of paired gold clusters within apoferritin nanoreactor for in vivo kidney targeting and biomedical imaging[J]. Journal of the American Chemical Society, 2011, 133(22):8617-8624. |
[39] | KAWASAKI H, HAMAGUCHI K, OSAKA I, et al. pH-dependent synthesis of pepsin-mediated gold nanoclusters with blue freen and red fluorescent emission[J]. Advanced Functional Materials, 2011, 21(18):3508-3515. |
[40] | CHEN T H, TSENG W L. (Lysozyme type Ⅵ)-stabilized Au8 clusters:aynthesis mechanism and application for sensing of glutathione in a single drop of blood[J]. Small, 2012, 8(12):1912-1919. |
[41] | LI Z, PENG H, LIU J, et al. Plant protein-directed synthesis of luminescent gold nanocluster hybrids for tumor imaging[J]. ACS Applied Materials & Interfaces, 2018, 10(1):83-90. |
[42] | MOHANTY J S, XAVIER P L, CHAUDHARI K, et al. Luminescent, bimetallic Au-Ag alloy quantum clusters in protein templates[J]. Nanoscale, 2012, 4(14):4255-4262. |
[43] | ZHAI Q, XING H, ZHANG X, et al. Enhanced electrochemiluminescence behavior of gold-silver bimetallic nanoclusters and its sensing application for mercury(Ⅱ)[J]. Analytical Chemistry, 2017, 89(14):7788-7794. |
[44] | ZHANG N, SI Y, SUN Z, et al. Rapid, selective, and ultrasensitive fluorimetric analysis of mercury and copper levels in blood using bimetallic gold-silver nanoclusters with "silver effect"-enhanced red fluorescence[J]. Analytical Chemistry, 2014, 86(23):11714-11721. |
[45] | ZHOU Q, LIN Y, XU M, et al. Facile synthesis of enhanced fluorescent gold-silver bimetallic nanocluster and its application for highly sensitive detection of inorganic pyrophosphatase activity[J]. Analytical Chemistry, 2016, 88(17):8886-8892. |
[46] | PANG S, LIU S. Lysozyme-stabilized bimetallic gold/silver nanoclusters as a turn-on fluorescent probe for determination of ascorbic acid and acid phosphatase[J]. Analytical Methods, 2017, 9(47):6713-6718. |
[47] | GAO Z, SU R, QI W, et al. Copper nanocluster-based fluorescent sensors for sensitive and selective detection of kojic acid in food stuff[J]. Sensors and Actuators B:Chemical, 2014, 195(1):359-364. |
[48] | GHOSH R, SAHOO A K, GHOSH S S, et al. Blue-emitting copper nanoclusters synthesized in the presence of lysozyme as candidates for cell labeling[J]. ACS Applied Materials & Interfaces, 2014, 6(6):3822-3828. |
[49] | FENG J, CHEN Y, HAN Y, et al. pH-regulated synthesis of trypsin-templated copper nanoclusters with blue and yellow fluorescent emission[J]. ACS Omega, 2017, 2(12):9109-9117. |
[50] | ZETH K, OFFERMANN S, ESSEN L O, et al. Iron-oxo clusters biomineralizing on protein surfaces:structural analysis of halobacterium salinarum DpsA in its low-and high-iron states[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(38):13780. |
[51] | UENO T, ABE S, KOSHIYAMA T, et al. Elucidation of metal-ion accumulation induced by hydrogen bonds on protein surfaces by using porous lysozyme crystals containing Rh(Ⅲ) ions as the model surfaces[J]. Chemistry (Weinheim an der Bergstrasse, Germany), 2010, 16(9):2730. |
[52] | 何乃普, 逯盛芳, 赵伟刚, 等. 基于蛋白质分子自组装体系的构建[J]. 化学进展, 2014, 26(12):303-309. HE N P, LU S F, ZHAO W G, et al. Fabrication of the self-assembly systems based on protein molecules[J]. Progress in Chemistry, 2014, 26(12):303-309. |
[53] | ZHANG L, LI N, GAO F, et al. Insulin amyloid fibrils:an excellent platform for controlled synthesis of ultrathin superlong platinum nanowires with high electrocatalytic activity[J]. Journal of the American Chemical Society, 2012, 134(28):11326-11329. |
[54] | TAO L, GAO Y, WU P, et al. Insulin templated synthesis of single-crystalline silver nanocables with ultrathin Ag cores[J]. RSC Advances, 2015, 5(47):37814-37817. |
[55] | HOU L, NIU Y, WANG Y, et al. Controlled synthesis of Pt-Pd nanoparticle chains with high electrocatalytic activity based on insulin amyloid fibrils[J]. Nano, 2016, 11(6):1650063. |
[56] | ZHOU X, LI R, DAI B, et al. The fabrication and electrical characterization of protein fibril-templated one-dimensional palladium nanostructures[J]. European Polymer Journal, 2013, 49(8):1957-1963. |
[57] | BOLISETTY S, ARCARI M, ADAMCIK J, et al. Hybrid amyloid membranes for continuous flow catalysis[J]. Langmuir, 2015, 31(51):13867-13873. |
[58] | NYSTROM G, FEMANDEZRONCO M P, BOLISETTY S, et al. Amyloid templated gold aerogels[J]. Advanced Materials, 2016, 28(3):472-478. |
[59] | HUANG R, ZHU H, SU R, et al. Catalytic membrane reactor immobilized with alloy nanoparticle-loaded protein fibrils for continuous reduction of 4-nitrophenol[J]. Environmental Science & Technology, 2016, 50(20):11263-11273. |
[60] | JAVED I, SUN Y, ADAMCIK J, et al. Co-fibrillization of pathogenic and functional amyloid proteins with gold nanoparticles against amyloidogenesis[J]. Biomacromolecules, 2017, 18(12):4316-4322. |
[61] | XU Z, LI L, LI H, et al. Synthesis of self-assembled noble metal nanoparticle chains using amyloid fibrils of lysozyme as templates[J]. Nanomaterials and Nanotechnology, 2016, 6(4):1-7. |
[62] | JUAREZ J, CAMBON A, GOYLOPEZ S, et al. Obtention of metallic nanowires by protein biotemplating and their catalytic application[J]. The Journal of Physical Chemistry Letters, 2010, 1(18):2680-2687. |
[63] | TAHERI R A, AKHTARI Y, MOGHADAM T T, et al. Assembly of gold nanorods on HSA amyloid fibrils to develop a conductive nanoscaffold for potential biomedical and biosensing applications[J]. Europe PMC, 2018, 8(1):9333. |
[64] | LEE D, CHOE Y J, CHOI Y S, et al. Photoconductivity of pea-pod-type chains of gold nanoparticles encapsulated within dielectric amyloid protein nanofibrils of a-synuclein[J]. Angewandte Chemie, 2011, 50(6):1332-1337. |
[65] | CHEN C L, ZHANG P, ROSI N L. A new peptide-based method for the design and synthesis of nanoparticle superstructures:construction of highly ordered gold nanoparticle double helices[J]. Journal of the American Chemical Society, 2008, 130(41):13555-13557. |
[66] | SHARMA N, TOP A, KⅡCK K, et al. One-dimensional gold nanoparticle arrays by electrostatically directed organization using polypeptide self-assembly[J]. Angewandte Chemie International Edition, 2009, 48(38):7078-7082. |
[67] | YANG T, ZHANG Y, LI Z. Formation of gold nanoparticle decorated lysozyme microtubes[J]. Biomacromolecules, 2011, 12(6):2027-2031. |
[68] | LARA C, HANDSCHIN S, MEZZENGA R. Towards lysozyme nanotube and 3D hybrid self-assembly[J]. Nanoscale, 2013, 5(16):7197-7201. |
[69] | LARA C, ADAMCIK J, JORDENS S, et al. General self-assembly mechanism converting hydrolyzed globular proteins into giant multistranded amyloid ribbons[J]. Biomacromolecules, 2011, 12(5):1868-1875. |
[70] | FU W C, OPAZO M A, ACUNA S M, et al. New route for self-assembly of α-lactalbumin nanotubes and their use as templates to grow silver nanotubes[J]. Plos One, 2017, 12(4):e0175680. |
[71] | GOTO S, AMANO Y, AKIYAMA M, et al. Gold nanoparticle inclusion into protein nanotube as a layered wall component[J]. Langmuir, 2013, 29(46):14293-14300. |
[72] | CARRENOFUENTES L, PLASCENCIAVILLA G, PALOMARES L A, et al. Modulating the physicochemical and structural properties of gold-functionalized protein nanotubes through thiol surface modification[J]. Langmuir, 2014, 30(49):14991-14998. |
[73] | FALKNER J C, AL-SOMALI A M, JAMISON J A, et al. Generation of size-controlled, submicrometer protein crystals[J]. Chemistry of Materials, 2005, 17(10):2679-2686. |
[74] | TAKAFUMI U. Porous protein crystals as reaction vessels[J]. Chemistry-A European Journal, 2013, 19(28):9096-9102. |
[75] | VILENCHIK L Z, GRIFFITH J P, CLAIR N S, et al. Protein crystals as novel microporous materials[J]. Journal of the American Chemical Society, 1998, 120(18):4290-4294. |
[76] | FALKNER J C, TURNER M E, BOSWORTH J K, et al. Virus crystals as nanocomposite scaffolds[J]. Journal of the American Chemical Society, 2005, 127(15):5274-5275. |
[77] | ABE S, TSUJIMOTO M, YONEDA K, et al. Porous protein crystals as reaction vessels for controlling magnetic properties of nanoparticles[J]. Small, 2012, 8(9):1314-1319. |
[78] | WEI H, WANG Z, ZHANG J, et al. Time-dependent, protein-directed growth of gold nanoparticles within a single crystal of lysozyme[J]. Nature Nanotechnology, 2011, 6(2):93-97. |
[79] | WEI H, LU Y. Catalysis of gold nanoparticles within lysozyme single crystals[J]. Chemistry-An Asian Journal, 2012, 7(4):680-683. |
[80] | GULI M, LAMBERT E, LI M, et al. Template-directed synthesis of nanoplasmonic arrays by intracrystalline metalization of cross-linked lysozyme crystals[J]. Angewandte Chemie, 2010, 49(3):520-523. |
[81] | MUSKENS O L, ENGLAND M W, DANOS L, et al. Plasmonic response of Ag-and Au-infiltrated cross-linked lysozyme crystals[J]. Advanced Functional Materials, 2013, 23(3):281-290. |
[82] | LIANG M, WANG L, SU R, et al. Synthesis of silver nanoparticles within cross-linked lysozyme crystals as recyclable catalysts for 4-nitrophenol reduction[J]. Catalysis Science & Technology, 2013, 3(8):1910-1914. |
[83] | LIANG M, WANG L, LIU X, et al. Cross-linked lysozyme crystal templated synthesis of Au nanoparticles as high-performance recyclable catalysts[J]. Nanotechnology, 2013, 24(24):245601. |
[84] | LIU M, WANG L, HUANG R, et al. Superior catalytic performance of gold nanoparticles within small cross-linked lysozyme crystals[J]. Langmuir, 2016, 32(42):10895-10904. |
[1] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[2] | 张澳, 罗英武. 低模量、高弹性、高剥离强度丙烯酸酯压敏胶[J]. 化工学报, 2023, 74(7): 3079-3092. |
[3] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[4] | 陈雅鑫, 袁航, 刘冠章, 毛磊, 杨纯, 张瑞芳, 张光亚. 蛋白质纳米笼介导的酶自固定化研究进展[J]. 化工学报, 2023, 74(7): 2773-2782. |
[5] | 蔡斌, 张效林, 罗倩, 党江涛, 左栗源, 刘欣梅. 导电薄膜材料的研究进展[J]. 化工学报, 2023, 74(6): 2308-2321. |
[6] | 崔张宁, 胡紫璇, 吴雷, 周军, 叶干, 刘田田, 张秋利, 宋永辉. 可降解纤维素基材料的耐水性能研究进展[J]. 化工学报, 2023, 74(6): 2296-2307. |
[7] | 李振, 张博, 王丽伟. PEG-EG固-固相变材料的制备和性能研究[J]. 化工学报, 2023, 74(6): 2680-2688. |
[8] | 陈韶云, 徐东, 陈龙, 张禹, 张远方, 尤庆亮, 胡成龙, 陈建. 单层聚苯胺微球阵列结构的制备及其吸附性能[J]. 化工学报, 2023, 74(5): 2228-2238. |
[9] | 侯文起, 孙彦, 董晓燕. 碱化修饰甲状腺素运载蛋白显著增强对淀粉样β蛋白聚集的抑制作用[J]. 化工学报, 2023, 74(5): 2100-2110. |
[10] | 代佳琳, 毕唯东, 雍玉梅, 陈文强, 莫晗旸, 孙兵, 杨超. 热物性对混合型CPCMs固液相变特性影响模拟研究[J]. 化工学报, 2023, 74(5): 1914-1927. |
[11] | 刘瑞琪, 周栖桐, 张悦, 贺莹, 高静, 马丽. 基于金纳米颗粒修饰二氧化硅纳米花的生物传感器构建及应用[J]. 化工学报, 2023, 74(3): 1247-1259. |
[12] | 徐东, 田杜, 陈龙, 张禹, 尤庆亮, 胡成龙, 陈韶云, 陈建. 聚苯胺/二氧化锰/聚吡咯复合纳米球的制备及其电化学储能性[J]. 化工学报, 2023, 74(3): 1379-1389. |
[13] | 陈瑞哲, 程磊磊, 顾菁, 袁浩然, 陈勇. 纤维增强树脂复合材料化学回收技术研究进展[J]. 化工学报, 2023, 74(3): 981-994. |
[14] | 黄心童, 耿宇昊, 刘恒源, 陈卓, 徐建鸿. 微流控制备新型功能纳米粒子研究进展[J]. 化工学报, 2023, 74(1): 355-364. |
[15] | 杨双桥, 韦宝杰, 徐大伟, 李莉, 王琪. 铝塑复合包装的应用及废弃物回收利用新技术[J]. 化工学报, 2022, 73(8): 3326-3337. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||