化工学报 ›› 2013, Vol. 64 ›› Issue (12): 4674-4680.DOI: 10.3969/j.issn.0438-1157.2013.12.060

• 过程系统工程 • 上一篇    

连续搅拌反应釜的自适应神经网络控制

李东娟   

  1. 辽宁工业大学化学与环境工程学院, 辽宁 锦州 121001
  • 收稿日期:2013-08-13 修回日期:2013-08-20 出版日期:2013-12-05 发布日期:2013-12-05
  • 通讯作者: 李东娟
  • 作者简介:李东娟(1979- ),女,讲师。
  • 基金资助:

    国家自然科学基金项目(61174017);辽宁省教育厅项目(L2013243)。

Adaptive neural network control for continuous stirred tank reactor

LI Dongjuan   

  1. School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou 121001, Liaoning, China
  • Received:2013-08-13 Revised:2013-08-20 Online:2013-12-05 Published:2013-12-05
  • Supported by:

    supported by the National Natural Science Foundation of China (61104017) and the Foundation of Educational Department of Liaoning Province (L2013243).

摘要: 基于神经网络的逼近特性,针对一类包含未知函数的串级连续搅拌釜式反应系统,提出了一种自适应控制算法。由于所考虑的反应系统具有非线性特性以及未知函数存在于各子系统的方程中,因此,该系统是复杂和难于控制的。为了克服困难,神经网络逼近系统中的未知函数,新奇的递归设计方法用于消除系统中的互联项,同时,需要定义特殊的被逼近非线性函数。利用李雅普诺夫稳定性分析方法,提出的控制算法保证了闭环系统的所有信号是有界的和系统的输出收敛到零的邻域内。仿真例子表明提出的控制算法是有效的。

关键词: 神经网络, 过程控制, 化学反应器, 非线性系统

Abstract: An adaptive control algorithm is proposed for continuous stirred tank reactor (CSTR) with unknown functions based on the approximation property of the neural networks.Because the considered reactor contains the nonlinear property and the unknown functions are included in the subsystem,it is a completed system and is very difficult to be controlled.In order to avoid the difficulties,a novel recursive procedure is given to remove the interconnection term and special approximated functions are defined to be approximated by using the neural networks.Using the Lyapunov method,the algorithm ensures that all the signals in the closed-loop are bounded and the output can converge to a neighborhood of zero.A simulation example is given to show effectiveness of the algorithm.

Key words: neural network, process control, chemical reactors, nonlinear systems

中图分类号: