[1] |
Adschiri T, Kanazawa K, Arai K. Rapid and continuous hydrothermal crystallization of metal oxide particles in supercritical water[J]. Journal of the American Ceramic Society, 1992, 75(4): 1019-1022
|
[2] |
Adschiri T, Hakuta Y, Sue K, et al. Hydrothermal synthesis of metal oxide nanoparticles at supercritical conditions[J]. Journal of Nanoparticle Research, 2001, 3(2/3): 227-235
|
[3] |
Adschiri T, Lee Y W, Goto M, et al. Green materials synthesis with supercritical water[J]. Green Chemistry, 2011, 13(6): 1380-1390
|
[4] |
Lu J, Minami K, Takami S, et al. Rapid and continuous synthesis of cobalt aluminate nanoparticles under subcritical hydrothermal conditions with in-situ surface modification[J]. Chemical Engineering Science, 2013, 85: 50-54
|
[5] |
Xu C, Lee J, Teja A S. Continuous hydrothermal synthesis of lithium iron phosphate particles in subcritical and supercritical water[J]. The Journal of Supercritical Fluids, 2008, 44(1): 92-97
|
[6] |
Chaudhry A A, Haque S, Kellici S, et al. Instant nano-hydroxyapatite: a continuous and rapid hydrothermal synthesis[J]. Chemical Communications, 2006 (21): 2286-2288
|
[7] |
Aksomaityte G, Poliakoff M, Lester E. The production and formulation of silver nanoparticles using continuous hydrothermal synthesis[J]. Chemical Engineering Science, 2013, 85: 2-10
|
[8] |
Dunne P W, Starkey C L, Gimeno-Fabra M, et al. The rapid size-and shape-controlled continuous hydrothermal synthesis of metal sulphide nanomaterials[J]. Nanoscale, 2014, 6:2406-2418
|
[9] |
Lester E, Blood P, Denyer J, et al. Reaction engineering: the supercritical water hydrothermal synthesis of nano-particles[J]. The Journal of Supercritical Fluids, 2006, 37(2): 209-214
|
[10] |
Toft L L, Aarup D F, Bremholm M, et al. Comparison of T-piece and concentric mixing systems for continuous flow synthesis of anatase nanoparticles in supercritical isopropanol/water[J]. Journal of Solid State Chemistry, 2009, 182(3): 491-495
|
[11] |
Wu Q L, Xiang L, Jin Y. Influence of CaCl2 on the hydrothermal modification of Mg(OH)2[J]. Powder Technology, 2006, 162(2): 100-104
|
[12] |
Wang Q, Xiang L, Zhang Y C, Jin Y. Simulation of the adsorption of CaCl2 on Mg(OH)2 planes[J].Journal of Materials Science, 2008, 43(7): 2387-2392
|
[13] |
Xiang L, Gong Y L, Li J C, Wang Z W. Influence of hydrothermal modification on the properties of Ni/Al2O3 catalyst[J].Applied Surface Science, 2004, 239(1): 94-100
|
[14] |
Li J C, Xiang L, Xu F, Wang Z W. Effect of hydrothermal treatment on the distribution of acidity of g-Al2O3 support[J].Applied Surface Science, 2006, 253(2): 766-770
|
[15] |
Li J C, Xiang L, Xu F, Wang Z W. Influence of hydrothermal modification of γ-Al2O3 on properties of NiMo/g-Al2O3 catalyst[J]. Applied Surface Science, 2008, 254: 2077-2080
|
[16] |
Xiang L, Deng X Y, Jin Y. Experimental study on synthesis of NiO nano-particles[J]. Scripta Materialia, 2002, 47(4): 219-224
|
[17] |
Liu H B, Xiang L, Jin Y. Hydrothermal modification and characterization of Ni(OH)2 with high discharge capability[J]. Crystal Growth & Design, 2006, 6(1): 283-286
|
[18] |
Yu S H, Yang J, Wu Y S, et al. Hydrothermal preparation and characterization of rod-like ultrafine powders of bismuth sulfide[J]. Materials Research Bulletin, 1998, 33(11): 1661-1666
|
[19] |
Yu S H, Liu B, Mo M S, et al. General synthesis of single‐crystal tungstate nanorods/nanowires: a facile, low‐temperature solution approach[J]. Advanced Functional Materials, 2003, 13(8): 639-647
|
[20] |
Cui X, Yu S H, Li L, et al. Selective synthesis and characterization of single‐crystal silver molybdate/tungstate nanowires by a hydrothermal process[J]. Chemistry-A European Journal, 2004, 10(1): 218-223
|
[21] |
Zhu W C, Zhang X Y, Xiang L, Zhu S L. Hydrothermal formation of the head to head coalesced szaibelyite MgBO2(OH) nanowires[J]. Nanoscale Research Letters, 2009, 4(7): 724-731
|
[22] |
Hou S C, Xiang L. Influence of activity of CaSO4·2H2O on hydrothermal formation of CaSO4·0.5H2O whiskers[J].Journal of Nanomaterials, 2013, DOI: 10.1155/2013/237828
|
[23] |
Sun X T Xiang, L. Synthesis of magnesium oxysulfate whiskers in the presence of sodium dodecyl benzene sulfonate[J]. Crystal Research and Technology, 2008, 43(5): 479-482
|
[24] |
Chen M J, Xiang L. Influence of Al2O3·xH2O crystallinities on the morphology of AlOOH whiskers[J]. Nano Biomed. Eng., 2010, 2(2): 121-125
|
[25] |
Sun X T, Shi W T, Xiang L, Zhu W C.Controllable synthesis of magnesium oxysulfate nanowires with different morphologies[J]. Nanoscale Research Letters, 2008, 3(10): 386-389
|
[26] |
Sun X T, Xiang L. Hydrothermal conversion of magnesium oxysulfate whiskers to magnesium hydroxide nanobelts[J].Materials Chemistry and Physics, 2008, 109: 381-385
|
[27] |
He T B, Xiang L, Zhu S L. Hydrothermal preparation of boehmite nanorods by selective adsorption of sulfate[J]. Langmuir, 2008, 24(15): 8284-8289
|
[28] |
He T B, Xiang L, Zhu W C, Zhu S L. Hydrothermal formation of γ-AlOOH nanorods in the presence of H2SO4[J].Materials Letters, 2008, 62(17/18): 2939-2942
|
[29] |
He T B, Xiang L, Zhu S L. Different nanostructures of boehmite fabricated by hydrothermal process: effects of pH and anions[J].CrystEngComm, 2009, 11(7): 1338-1342
|
[30] |
Zhu W C, Xiang L, Zhang Q, Zhang X Y, Hu L, Zhu S L. Morphology preservation and crystallinity improvement in the thermal conversion of the hydrothermal synthesized MgBO2(OH) nanowhiskers to Mg2B2O5 nanowhiskers[J]. Journal of Crystal Growth, 2008, 310: 4262-4267
|
[31] |
Zhu W C, Zhang Q, Xiang L, Wei F, Piao X L, Zhu S L. Flux-assisted thermal conversion route to pore-free high crystallinity magnesium borate nanowhiskers at a relatively low temperature[J]. Crystal Growth & Design, 2008, 8(8): 2938-2945
|
[32] |
Zhu W C, Li G D, Zhang Q, Xiang L, Zhu S L. Hydrothermal mass production of MgBO2(OH) nanowhiskers and subsequent thermal conversion to Mg2B2O5 nanorods for biaxially oriented polypropylene resins reinforcement[J]. Powder Technology, 2010, 203: 265-271
|
[33] |
Zhu W C, Zhang Q, Xiang L, Zhu S L. Green co-precipitation byproduct-assisted thermal conversion route to sub- micron Mg2B2O5 whiskers[J].CrystEngComm, 2011, 11: 709-718
|
[34] |
Zhu W C, Zhang Q, Xiang L, Zhu S L. Repair the pores and preserve the morphology: formation of high crystallinity 1D nanostructures via the thermal conversion route[J].Crystal Growth & Design, 2011, 11: 709-718
|