化工学报 ›› 2022, Vol. 73 ›› Issue (2): 951-959.DOI: 10.11949/0438-1157.20210549
收稿日期:
2021-08-19
修回日期:
2021-11-01
出版日期:
2022-02-05
发布日期:
2022-02-18
通讯作者:
李国辉
作者简介:
居涛(1995—),男,硕士研究生,基金资助:
Tao JU1(),Guohui LI2(),Fengxia GENG1
Received:
2021-08-19
Revised:
2021-11-01
Online:
2022-02-05
Published:
2022-02-18
Contact:
Guohui LI
摘要:
二维过渡金属碳/氮化物(MXene)是一种新型二维材料,可通过从MAX相前体中选择性刻蚀 A 原子层获得。在传统制备MXene的方法中,常用的刻蚀剂是氢氟酸。然而高浓度氢氟酸的使用,不可避免会带来安全问题,甚至破坏MXene的晶体结构,从而限制本征物理化学性能。从典型的碳化物前体Ti3AlC2出发,使用 NH4BF4作为刻蚀剂,有效降低体系中酸的使用量;在反应过程中,刻蚀 A 层的同时,
中图分类号:
居涛, 李国辉, 耿凤霞. 一步法合成二维Ti3C2及其电化学性能研究[J]. 化工学报, 2022, 73(2): 951-959.
Tao JU, Guohui LI, Fengxia GENG. One-step synthesis of two-dimensional Ti3C2 and its electrochemical performance[J]. CIESC Journal, 2022, 73(2): 951-959.
Method | Time/h | Acid concentration/ (mol·L-1) | Lateral size/μm |
---|---|---|---|
this work | 8 | 6 | 1.5—2.5 |
LiF/HCl[ | 45 | 6 | <1.0 |
NH4F/HCl[ | 24 | 6 | — |
NaBF4/HCl[ | 24 | 12 | — |
FeF3/HCl[ | 50 | 6 | — |
表1 通过不同方法生产的MXene的工艺条件和结果
Table 1 Process conditions and results for MXene produced by different methods
Method | Time/h | Acid concentration/ (mol·L-1) | Lateral size/μm |
---|---|---|---|
this work | 8 | 6 | 1.5—2.5 |
LiF/HCl[ | 45 | 6 | <1.0 |
NH4F/HCl[ | 24 | 6 | — |
NaBF4/HCl[ | 24 | 12 | — |
FeF3/HCl[ | 50 | 6 | — |
Material | Test conditions | Specific capacitance/ (F?g-1) | Cycling stability |
---|---|---|---|
this work | 5 mV?s-1 | 503 | 95.8% for 104 cycles |
polyaniline/Ti3C2[ Ti3C2[ Ti3C2[ Ti3C2[ Ti3C2[ Ti3C2[ | 2 mV?s-1 1 mV?s-1 5 mV?s-1 5 mV?s-1 1 A?g-1 1 A?g-1 | 503 500 266.5 228 333.3 231 | 98.3% for 104 cycles >99% for 104 cycles 86.4% for 104 cycles 85% for 103 cycles 97.5% for 5000 cycles 71% for 3000 cycles |
表2 所制备的Ti3C2电极容量以及循环稳定性能与文献中的数据对比
Table 2 The gravimetric capacitance and cycling stability comparisons between designed Ti3C2 and Ti3C2 MXenes reported in literatures
Material | Test conditions | Specific capacitance/ (F?g-1) | Cycling stability |
---|---|---|---|
this work | 5 mV?s-1 | 503 | 95.8% for 104 cycles |
polyaniline/Ti3C2[ Ti3C2[ Ti3C2[ Ti3C2[ Ti3C2[ Ti3C2[ | 2 mV?s-1 1 mV?s-1 5 mV?s-1 5 mV?s-1 1 A?g-1 1 A?g-1 | 503 500 266.5 228 333.3 231 | 98.3% for 104 cycles >99% for 104 cycles 86.4% for 104 cycles 85% for 103 cycles 97.5% for 5000 cycles 71% for 3000 cycles |
1 | Ronchi R M, Arantes J T, Santos S F. Synthesis, structure, properties and applications of MXenes: current status and perspectives[J]. Ceramics International, 2019, 45(15): 18167-18188. |
2 | Khazaei M, Mishra A, Venkataramanan N S, et al. Recent advances in MXenes: from fundamentals to applications[J]. Current Opinion in Solid State and Materials Science, 2019, 23(3): 164-178. |
3 | Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials, 2011, 23(37): 4248-4253. |
4 | Chang F Y, Li C S, Yang J, et al. Synthesis of a new graphene-like transition metal carbide by de-intercalating Ti3AlC2[J]. Materials Letters, 2013, 109: 295-298. |
5 | Alhabeb M, Maleski K, Anasori B, et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene)[J]. Chemistry of Materials, 2017, 29(18): 7633-7644. |
6 | Hui X B, Ge X L, Zhao R Z, et al. Interface chemistry on MXene-based materials for enhanced energy storage and conversion performance[J]. Advanced Functional Materials, 2020, 30(50): 2005190. |
7 | Jiang Q, Lei Y J, Liang H F, et al. Review of MXene electrochemical microsupercapacitors[J]. Energy Storage Materials, 2020, 27: 78-95. |
8 | Zhang C, McKeon L, Kremer M P, et al. Additive-free MXene inks and direct printing of micro-supercapacitors[J]. Nature Communications, 2019, 10: 1795. |
9 | Zhao F F, Liu W H, Qiu T L, et al. All two-dimensional pseudocapacitive sheet materials for flexible asymmetric solid-state planar microsupercapacitors with high energy density[J]. ACS Nano, 2020, 14(1): 603-610. |
10 | Lukatskaya M R, Mashtalir O, Ren C E, et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide[J]. Science, 2013, 341(6153): 1502-1505. |
11 | Xia Y, Mathis T S, Zhao M Q, et al. Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes[J]. Nature, 2018, 557(7705): 409-412. |
12 | Karahan H E, Goh K, Zhang C F, et al. MXene materials for designing advanced separation membranes[J]. Advanced Materials, 2020, 32(29): 1906697. |
13 | Wang H, Lee J M. Recent advances in structural engineering of MXene electrocatalysts[J]. Journal of Materials Chemistry A, 2020, 8(21): 10604-10624. |
14 | Zhang J Q, Zhao Y F, Guo X, et al. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction[J]. Nature Catalysis, 2018, 1(12): 985-992. |
15 | Ramalingam V, Varadhan P, Fu H C, et al. Heteroatom-mediated interactions between ruthenium single atoms and an MXene support for efficient hydrogen evolution[J]. Advanced Materials, 2019, 31(48): 1903841. |
16 | Xu D X, Li Z D, Li L S, et al. Insights into the photothermal conversion of 2D MXene nanomaterials: synthesis, mechanism, and applications[J]. Advanced Functional Materials, 2020, 30(47): 2000712. |
17 | Iqbal A, Sambyal P, Koo C M. 2D MXenes for electromagnetic shielding: a review[J]. Advanced Functional Materials, 2020, 30(47): 2000883. |
18 | Iqbal A, Shahzad F, Hantanasirisakul K, et al. Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene)[J]. Science, 2020, 369(6502): 446-450. |
19 | Weng G M, Li J Y, Alhabeb M, et al. Layer-by-layer assembly of cross-functional semi-transparent MXene-carbon nanotubes composite films for next-generation electromagnetic interference shielding[J]. Advanced Functional Materials, 2018, 28(44): 1803360. |
20 | Venkateshalu S, Grace A N. MXenes—a new class of 2D layered materials: synthesis, properties, applications as supercapacitor electrode and beyond[J]. Applied Materials Today, 2020, 18: 100509. |
21 | Hu M M, Zhang H, Hu T, et al. Emerging 2D MXenes for supercapacitors: status, challenges and prospects[J].Chem. Soc. Rev., 2020, 49(18): 6666-6693. |
22 | Naguib M, Barsoum M W, Gogotsi Y, et al. Ten years of progress in the synthesis and development of MXenes[J]. Adv. Mater., 2021, 33(39): 2103393. |
23 | Shi H H, Zhang P P, Liu Z C, et al. Ambient-stable two-dimensional titanium carbide (MXene) enabled by iodine etching[J]. Angewandte Chemie International Edition, 2021, 60(16): 8689-8693. |
24 | Ghidiu M, Lukatskaya M R, Zhao M Q, et al. Conductive two-dimensional titanium carbide‘clay’with high volumetric capacitance[J]. Nature, 2014, 516(7529): 78-81. |
25 | Qiu T L, Li G H, Shao Y L, et al. Facile synthesis of colloidal nitrogen-doped titanium carbide sheets with enhanced electrochemical performance[J]. Carbon Energy, 2020, 2(4): 624-634. |
26 | Wang X, Garnero C, Rochard G, et al. A new etching environment (FeF3/HCl) for the synthesis of two-dimensional titanium carbide MXenes: a route towards selective reactivity vs. water[J]. Journal of Materials Chemistry A, 2017, 5(41): 22012-22023. |
27 | Halim J, Lukatskaya M R, Cook K M, et al. Transparent conductive two-dimensional titanium carbide epitaxial thin films[J]. Chemistry of Materials, 2014, 26(7): 2374-2381. |
28 | Wang L B, Zhang H, Wang B, et al. Synthesis and electrochemical performance of Ti3C2Tx with hydrothermal process[J]. Electronic Materials Letters, 2016, 12(5): 702-710. |
29 | Peng C, Wei P, Chen X, et al. A hydrothermal etching route to synthesis of 2D MXene (Ti3C2, Nb2C): enhanced exfoliation and improved adsorption performance[J]. Ceramics International, 2018, 44(15): 18886-18893. |
30 | Sarycheva A, Gogotsi Y. Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx MXene[J]. Chemistry of Materials, 2020, 32(8): 3480-3488. |
31 | Jiang Q, Kurra N, Alhabeb M, et al. All pseudocapacitive MXene-RuO2 asymmetric supercapacitors[J]. Advanced Energy Materials, 2018, 8(13): 1703043. |
32 | Alhabeb M, Maleski K, Mathis T S, et al. Selective etching of silicon from Ti3SiC2 (MAX) to obtain 2D titanium carbide (MXene)[J]. Angewandte Chemie, 2018, 130(19): 5542-5546. |
33 | Li G H, Jiang K, Zaman S, et al. Ti3C2 sheets with an adjustable surface and feature sizes to regulate the chemical stability[J]. Inorganic Chemistry, 2019, 58(14): 9397-9403. |
34 | Zhang J Z, Kong N, Uzun S, et al. Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity[J]. Advanced Materials, 2020, 32(23): 2001093. |
35 | Yoon Y, Lee M, Kim S K, et al. A strategy for synthesis of carbon nitride induced chemically doped 2D MXene for high-performance supercapacitor electrodes[J]. Adv. Energy Mater., 2018, 8(15): 1703173. |
36 | Yang C H, Tang Y, Tian Y P, et al. Flexible nitrogen-doped 2D titanium carbides (MXene) films constructed by an ex situ solvothermal method with extraordinary volumetric capacitance[J]. Adv. Energy Mater., 2018, 8(31): 1802087. |
37 | Mohammadi A, Moncada J, Chen H Z, et al. Thick and freestanding MXene/PANI pseudocapacitive electrodes with ultrahigh specific capacitance[J]. J. Mater. Chem. A, 2018, 6(44): 22123-22133. |
38 | Wu W L, Niu D J, Zhu J F, et al. Organ-like Ti3C2 Mxenes/polyaniline composites by chemical grafting as high-performance supercapacitors[J]. Journal of Electroanalytical Chemistry, 2019, 847: 113203. |
39 | Li J B, Liu Y, Xu F, et al. K+ intercalation of NH4HF2-exfoliated Ti3C2 MXene as binder-free electrodes with high electrochemical capacitance[J]. Phys. Status Solidi A, 2020, 217(8): 1900806. |
40 | Mao X Q, Zou Y J, Xu F, et al. Three-dimensional self-supporting Ti3C2 with MoS2 and Cu2O nanocrystals for high-performance flexible supercapacitors[J]. ACS Appl. Mater. Interfaces, 2021, 13(19): 22664-22675. |
[1] | 王琪, 张斌, 张晓昕, 武虎建, 战海涛, 王涛. 氯铝酸-三乙胺离子液体/P2O5催化合成伊索克酸和2-乙基蒽醌[J]. 化工学报, 2023, 74(S1): 245-249. |
[2] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[3] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[4] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[5] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[6] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[7] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[8] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[9] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[10] | 屈园浩, 邓文义, 谢晓丹, 苏亚欣. 活性炭/石墨辅助污泥电渗脱水研究[J]. 化工学报, 2023, 74(7): 3038-3050. |
[11] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[12] | 邢美波, 张中天, 景栋梁, 张洪发. 磁调控水基碳纳米管协同多孔材料强化相变储/释能特性[J]. 化工学报, 2023, 74(7): 3093-3102. |
[13] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[14] | 李彬, 徐正虎, 姜爽, 张天永. 双氧水催化氧化法清洁高效合成促进剂CBS[J]. 化工学报, 2023, 74(7): 2919-2925. |
[15] | 董茂林, 陈李栋, 黄六莲, 吴伟兵, 戴红旗, 卞辉洋. 酸性助水溶剂制备木质纳米纤维素及功能应用研究进展[J]. 化工学报, 2023, 74(6): 2281-2295. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||