化工学报 ›› 2015, Vol. 66 ›› Issue (3): 861-871.DOI: 10.11949/j.issn.0438-1157.20141509
李超超, 方星亮, 陈杰, 羊家威, 成少安
收稿日期:
2014-10-08
修回日期:
2014-12-07
出版日期:
2015-03-05
发布日期:
2015-03-05
通讯作者:
成少安
基金资助:
国家自然科学基金项目(51278448);国家高技术研究发展计划项目(2012AA051502);高等学校博士学科点专项科研基金项目(20110101110018)。
LI Chaochao, FANG Xingliang, CHEN Jie, YANG Jiawei, CHENG Shao'an
Received:
2014-10-08
Revised:
2014-12-07
Online:
2015-03-05
Published:
2015-03-05
Supported by:
supported by the National Natural Science Foundation of China (51278448), the National High Technology Research and Development Program of China (2012AA051502) and the Research Fund for the Doctoral Program of Higher Education (20110101110018).
摘要:
近年来,随着太阳能被引入微生物燃料电池领域,微生物电化学-光电化学协同产电、产燃料或净化环境的技术成为研究热点。太阳能转化的常用媒介是金属氧化物,探究其与微生物间的相互作用对认清协同机理、提高体系效率等方面有重大意义。综述了不同类型的金属氧化物-微生物相互作用的研究工作,包括微生物-金属氧化物间物理吸附作用、微生物对金属氧化物的矿化和风化作用、微生物-金属氧化物协同产电产燃料系统、金属氧化物光催化杀菌以及光电-微生物电化学协同治理有机污染物或重金属污染,提出了更高效的微生物电化学-光电化学体系的构建方法,为微生物-光催化材料协同体系的实际应用提供帮助。
中图分类号:
李超超, 方星亮, 陈杰, 羊家威, 成少安. 金属氧化物与微生物相互作用及其在能源环境领域的应用[J]. 化工学报, 2015, 66(3): 861-871.
LI Chaochao, FANG Xingliang, CHEN Jie, YANG Jiawei, CHENG Shao'an. Interaction between metal oxide and microorganism and application in energy and environment[J]. CIESC Journal, 2015, 66(3): 861-871.
[1] | Nannipieri P, Ascher J, Ceccherini M T, Landi L, Pietramellara G, Renella G. Microbial diversity and soil functions [J]. European Journal of Soil Science, 2003, 54 (4): 655-670 |
[2] | Busscher H J, Norde W, Sharma P K, Prashant K, van der Mei H C. Interfacial re-arrangement in initial microbial adhesion to surfaces [J]. Current Opinion in Colloid & Interface Science, 2010, 15 (6): 510-517 |
[3] | Spormann A. Physiology of microbes in biofilms//Bacterial Biofilms [J]. Current Topics in Microbiology and Immunology, 2008, 322: 17-36 |
[4] | Li Sha (李莎), Li Fuchun (李富春), Cheng Liangjuan (程良娟). Recent development in bio-weathering research [J]. Mineral Resource and Geology (矿产与地质), 2006, 20 (6): 577-582 |
[5] | Xue Zhonghui (薛中会), Wu Chao (武超), Dai Shuxi (戴树玺), Du Zuliang (杜祖亮). Advances in the study of biomineralization [J]. Journal of Henan University: Natural Science (河南大学学报:自然科学版), 2003, 22 (4): 21-25 |
[6] | Lu A, Li Y, Jin S, Wang X, Wu X L, Zeng C P, Li Y, Ding H R, Hao R X, Lv M. Growth of non-phototrophic microorganisms using solar energy through mineral photocatalysis [J]. Nature Communications, 2012, 3: 768-777 |
[7] | Ding Hongrui (丁竑瑞), Li Yan (李艳), Lu Anhuai (鲁安怀), Quan Chao (权超), Wang Xin (王鑫), Yan Yunhua (颜云花), Zeng Cuiping (曾翠平), Wang Changqiu (王长秋). Experimental researches on photoreduction of azo dyes in the rutile-cathode bioelectrochemical system [J]. Acta Petrologica Et Mineralogica (岩石矿物学杂志), 2009, 28 (6): 541-546 |
[8] | Lu Anhuai (鲁安怀). Mineralogical photocatalysis in natural self-purification of inorganic minerals [J]. Acta Petrologica Et Mineralogic (岩石矿物学杂志), 2003, 22 (4): 323-331 |
[9] | Rong Xingmin (荣兴民), Huang Qiaoyun (黄巧云), Chen Wenli (陈雯莉), Liang Wei (梁巍). Interaction mechanisms of soil minerals with microorganisms and their environmental significance [J]. Acta Ecologica Sinica (生态学报), 2008, 28 (1): 376-387 |
[10] | Strevett K A, Chen G. Microbial surface thermodynamics and applications [J]. Research in Microbiology, 2003, 154 (5): 329-335 |
[11] | Chen G, Zhu H. Bacterial adhesion to silica sand as related to Gibbs energy variations [J]. Colloids and Surfaces B: Biointerfaces, 2005, 44 (1): 41-48 |
[12] | Liu Xiaomeng (刘晓猛). Interactions and formation mechanisms of microbial aggregates [D]. Hefei: University of Science and Technology of China, 2008 |
[13] | van Loosdrecht M C M, Lyklema J, Norde W, Zehnder A J B. Bacterial adhesion: a physicochemical approach [J]. Microbial Ecology, 1989, 17 (1): 1-15 |
[14] | Hori K, Matsumoto S. Bacterial adhesion: from mechanism to control [J]. Biochemical Engineering Journal, 2010, 48 (3): 424-434 |
[15] | Chrysikopoulos C V, Syngouna V I. Attachment of bacteriophages MS2 and ΦX174 onto kaolinite and montmorillonite: extended DLVO interactions [J]. Colloids and Surfaces B: Biointerfaces, 2012, 92: 74-83 |
[16] | Shashikala A R, Raichur A M. Role of interfacial phenomena in determining adsorption of Bacillus polymyxa onto hematite and quartz [J]. Colloids and Surfaces B: Biointerfaces, 2002, 24 (1): 11-20 |
[17] | Farahat M, Hirajima T, Sasaki K, Doi K. Adhesion of Escherichia coli onto quartz, hematite and corundum: extended DLVO theory and flotation behavior [J]. Colloids and Surfaces B: Biointerfaces, 2009, 74 (1): 140-14 |
[18] | Upritchard H G, Yang J, Bremer P J, Lamont I L, McQuillan A J. Adsorption of enterobactin to metal oxides and the role of siderophores in bacterial adhesion to metals [J]. Langmuir, 2011, 27 (17): 10587-10596 |
[19] | Jr F C, Das A. Adhesion of dissimilatory Fe(Ⅲ)-reducing bacteria to Fe(Ⅲ) minerals [J]. Geomicrobiol J., 2002, 19 (2): 161-177 |
[20] | Ams D A, Fein J B, Dong H L, Maurice P A. Experimental measurements of the adsorption of Bacillus subtilis and Pseudomonas mendocina onto Fe-oxyhydroxide-coated and uncoated quartz grains [J]. Geomicrobiol J., 2004, 21 (8): 511-519 |
[21] | Babin D, Ding G C, Pronk G J, Heister K, Kogel-Knabner I, Smalla K. Metal oxides, clay minerals and charcoal determine the composition of microbial communities in matured artificial soils and their response to phenanthrene [J]. FEMS Microbiology Ecology, 2013, 86 (1): 3-14 |
[22] | Yin Yao (殷瑶).Basic study on the electricity generation process and performance optimization of two-chamber mediatorless microbial fuel cell [D]. Shanghai: East China University of Science, 2013 |
[23] | Rhoads A, Beyenal H, Lewandowski Z. Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant [J]. Environmental Science & Technology, 2005, 39 (12): 4666-4671 |
[24] | Shantaram A, Beyenal H, Raajan R, Veluchamy A, Lewandowski Z. Wireless sensors powered by microbial fuel cells [J]. Environ. Sci. Technol., 2005, 39 (13): 5037-5042 |
[25] | Clauwaert P, van der Ha D, Boon N, Verbeken K, Verhaege M, Rabaey K, Verstraete W. Open air biocathode enables effective electricity generation with microbial fuel cells [J]. Environ. Sci. Technol., 2007, 41 (21): 7564-7569 |
[26] | Ren H, Lee H S, Chae J. Miniaturizing microbial fuel cells for potential portable power sources: promises and challenges [J]. Microfluidics and Nanofluidics, 2012, 13 (3): 353-381 |
[27] | Tang Zhiyuan (唐致远), Geng Xin (耿新). Preparation of Fe3+ doped manganese dioxide for electrode material of supercapacitor [J]. Chinese Journal of Applied Chemistry (应用化学), 2002, 19 (10): 936-940 |
[28] | Gadd G M. Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation [J]. Mycological Research, 2007, 111 (1): 43-49 |
[29] | Rawlings D E, Johnson D B. The microbiology of biomining: development and optimization of mineral-oxidizing microbial consortia [J]. Microbiology, 2007, 153 (2): 315-324 |
[30] | Wei Z, Hillier S, Gadd G M. Biotransformation of manganese oxides by fungi: solubilization and production of manganese oxalate biominerals [J]. Environmental Microbiology, 2012, 14 (7): 1744-1753 |
[31] | Mulligan C N, Kamali M. Bioleaching of copper and other metals from low-grade oxidized mining ores by Aspergillus niger [J]. Journal of Chemical Technology and Biotechnology, 2003, 78 (5): 497-503 |
[32] | Marcin G, Anna J W, Bo?ena P P. Abortiporus biennis tolerance to insoluble metal oxides: oxalate secretion, oxalate oxidase activity, and mycelial morphology [J]. Biometals, 2009, 22 (3): 401-410 |
[33] | Fomina M, Charnock J, Hillier S, Alvarez R, Gadd G M. Fungal transformations of uranium oxides [J]. Environmental Microbiology, 2007, 9 (7): 1696-1710 |
[34] | Ward M B, Kapitulcinova D, Brown A P, Heard P J, Cherns D, Cockell C S, Hallam K R, Ragnarsdottir K V. Investigating the role of microbes in mineral weathering: nanometre-scale characterisation of the cell-mineral interface using FIB and TEM [J]. Micron., 2013, 47: 10-17 |
[35] | Wang Ben (王本), Tang Ruikang (唐睿康). Biomineralization: one promising bridge between inorganic chemistry and biomedicine [J]. Process in Chemistry (化学进展), 2013, 25 (4): 633-641 |
[36] | Banfield J F, Welch S A, Zhang H Z, Ebert T T, Penn R L. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products [J]. Science, 2000, 289 (5480): 751-754 |
[37] | Chan C S, De Stasio G, Welch S A, Girasole M, Frazer B H, Nesterova M V, Fakra S, Banfield J F. Microbial polysaccharides template assembly of nanocrystal fibers [J]. Science, 2004, 303 (5664): 1656-1658 |
[38] | Pan Yongxin (潘永信), Deng Chenglong (邓成龙), Liu Qingsong (刘青松), Zhu Rixiang (朱日祥). Advances in biomineralization and magnetic properties of MTB magnetosomes [J]. Chinese Science Bulletin (科学通报), 2004, 49 (24): 2505-2510 |
[39] | Faivre D, Schüler D. Magnetotactic bacteria and magnetosomes [J]. Chemical Reviews, 2008, 108 (11): 4875-4898 |
[40] | Mamet B, Préat A. Iron-bacterial mediation in phanerozoic red limestones: state of the art [J]. Sedimentary Geology, 2006, 185 (3/4): 147-157 |
[41] | Kirthi A V, Rahuman A A, Rajakumar G, Marimuthu S, Santhoshkumar T, Jayaseelan C, Elange G, Zahir A A, Kamaraj C, Bagavan A. Biosynthesis of titanium dioxide nanoparticles using bacterium Bacillus subtilis [J]. Materials Letters, 2011, 65 (17): 2745-2747 |
[42] | Jha A K, Prasad K, Kulkarni A. Synthesis of TiO2 nanoparticles using microorganisms [J]. Colloids and Surfaces B: Biointerfaces, 2009, 71 (2): 226-229 |
[43] | Rajakumar G, Rahuman A A, Priyamvada B, Khanna V G, Kumar D K, Sujin P J. Eclipta prostrata leaf aqueous extract mediated synthesis of titanium dioxide nanoparticles [J]. Materials Letters, 2012, 68: 115-117 |
[44] | Hansel C M, Zeiner C A, Santelli C M, Santelli C M, Webb S M. Mn(Ⅱ) oxidation by an ascomycete fungus is linked to superoxide production during asexual reproduction [J]. Proceedings of the National Academy of Sciences, 2012, 109 (31): 12621-12625 |
[45] | Tang Y, Zeiner C A, Santelli C M, Hansel C M. Fungal oxidative dissolution of the Mn(Ⅱ)-bearing mineral rhodochrosite and the role of metabolites in manganese oxide formation [J]. Environmental Microbiology, 2013, 15 (4): 1063-1077 |
[46] | Santelli C M, Webb S M, Dohnalkova A C, Hansel C M. Diversity of Mn oxides produced by Mn(Ⅱ)-oxidizing fungi [J]. Geochimica et Cosmochimica Acta, 2011, 75 (10): 2762-2776 |
[47] | Hilton R J, Keyes J D, Watt R K. Photoreduction of Au(III) to form Au(0) nanoparticles using ferritin as a photocatalyst//Varadan V K. Proceedings of SPIE—The International Society for Optical Engineering [C]. San Diego, America: SPIE, 2010: 1-10 |
[48] | Peng X T, Zhou H Y, Wu Z J, Jiang L, Tang S, Yao H Q, Chen G Q. Biomineralization of phototrophic microbes in silica-enriched hot springs in South China [J]. Chinese Sci. Bull., 2007, 52 (3): 367-379 |
[49] | Carré G, Hamon E, Ennahar S, Estner M, Lett M C, Horvatovich P, Gies J P, Keller V, Keller N, Andre P. TiO2 photocatalysis damages lipids and proteins in Escherichia coli [J]. Applied and Environmental Microbiology, 2014, 80 (8): 2573-2581 |
[50] | Zhanqi G, Shaogui Y, Na T, Sun C. Microwave assisted rapid and complete degradation of atrazine using TiO2 nanotube photocatalyst suspensions [J]. Journal of Hazardous Materials, 2007, 145 (3): 424-430 |
[51] | Li Juanhong (李娟红) ,Lei Yanying (雷闫盈), Wang Xiaogang (王小刚). Study for photocatalytic sterilizing mechanism and sterilizing capability of semiconductive nanocryslalline TiO2 film [J]. Journal of Materials Engineering (材料工程), 2006 (S1): 222-224, 228 |
[52] | Huang Z B, Zheng X, Yan D H, Yin G F, Liao X M, Kang Y Q, Yao Y D, Huang D, Hao B Q. Toxicological effect of ZnO nanoparticles based on bacteria [J]. Langmuir, 2008, 24 (8): 4140-4144 |
[53] | Bodaghi H, Mostofi Y, Oromiehie A, Zamani Z, Ghanbarzadeh B, Costa C, Conte A, Del Nobile M A. Evaluation of the photocatalytic antimicrobial effects of a TiO2 nanocomposite food packaging film by in vitro and in vivo tests [J]. LWT-Food Sci. Technol., 2013, 50 (2): 702-706 |
[54] | Rodriguez C, Di Cara A, Renaud F N R, Freney J, Horvais N, Borel R, Puzenat E, Guillard C. Antibacterial effects of photocatalytic textiles for footwear application [J]. Catalysis Today, 2014, 230: 41-46 |
[55] | Zeng Zhixiong (曾志雄), Xu Yudang (徐玉党). Nanophotocatalytic degradation of purifying air in using nano-TiO2 [J]. Refrigeration and Air-Condition (制冷与空调), 2003 (4): 36-39 |
[56] | Xiong Qin (熊勤). Research of the application of nano-photocatalyst on environment protection [D]. Wuhan: Huazhong Normal University, 2005 |
[57] | Ma Zhengxian (马正先), Han Yuexin (韩跃新), Ma Yundong (马云东), Wang Zehong (王泽红), Yuan Zhitao (袁致涛), Yin Wanzhong (印万忠). Bactericidal potency of nano-ZnO [J]. Mining and Metallurcy (矿冶), 2005, 13 (4): 57-59 |
[58] | Xu Lixian (胥利先), Sun Jihong (孙继红), Ma Chongfang (马重芳), Meng Sheng (孟声). Research progress of nano modification coating [J]. Chemical Industry and Engineering Progress (化工进展), 2005, 24 (4): 341-349 |
[59] | Baek Y W, An Y J. Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus [J]. Science of The Total Environment, 2011, 409 (8): 1603-1608 |
[60] | Zhao Yanning (赵艳凝), Teng Honghui (滕洪辉), Chang Limin (常立民), Wen Fuji (文福姬). Studies on the bactericidal performance of indium doped nano-zinc oxide [J]. Journal of Huazhong Normal University: Nat. Sci. (华中师范大学学报:自然科学版), 2008, 42 (3): 400-403 |
[61] | Suresh A K, Pelletier D A, Doktycz M J. Relating nanomaterial properties and microbial toxicity [J]. Nanoscale, 2013, 5 (2): 463-474 |
[62] | Jiang Lina (姜丽娜). The influences of structures and photocatalytical activity of titanium dioxide by organic and metallic ion doping [D]. Jinan: Shandong Polytechnic University, 2010 |
[63] | Zhang Ping (张萍). Research on synthesis of nano-TiO2 photosemiductior sol as plant antibacterial material and its biological effects [D]. Beijing: Chinese Academy of Agricultural Sciences, 2007 |
[64] | Simon-Deckers A, Loo S, Mayne-Lhermite M, Herlin-Boime N, Herlin-Boime N, Reynaud C, Gouget B, Carriere M. Size-, composition-and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria [J]. Environmental Science & Technology, 2009, 43 (21): 8423-8429 |
[65] | Tong T Z, Shereef A, Wu J S, Binh C T T, Kelly J J, Gaillard J F, Gray K A. Effects of material morphology on the phototoxicity of nano-TiO2 to bacteria [J]. Environmental Science & Technology, 2013, 47 (21): 12486-12495 |
[66] | Jr R F H, Wu N, Porter D, Buford M, Wolfarth M, Holian A. Particle length-dependent titanium dioxide nanomaterials toxicity and bioactivity [J]. Particle and Fibre Toxicology, 2009, 6: 35-45 |
[67] | Adams L K, Lyon D Y, Alvarez P J J. Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions [J]. Water Research, 2006, 40 (19): 3527-3532 |
[68] | Wang Xin (王鑫), Li Yan (李艳), Lu Anhuai (鲁安怀), Yan Yunhua (颜云花), Zeng Cuiping (曾翠平), Ding Hongrui (丁竑瑞), Wang Changqiu (王长秋). Experimental researches on the pathway of the chemoautotroph microbes utilizing solar energy [J]. Acta Petrologica Et Mineralogic (岩石矿物学杂志), 2009, 28 (6): 527-534 |
[69] | Zeng Cuiping (曾翠平), Lu Anhuai (鲁安怀), Li Yan (李艳), Wu Jing (吴婧), Wang Xin (王鑫), Ding Hongrui (丁竑瑞), Yan Yunhua (颜云花). Response of microbial community to sunilght catalysis of semiconductor minerals in red soil [J]. Geological Journal of China Universities (高校地质学报), 2011, 17 (1): 101-106 |
[70] | Lu Anhuai (鲁安怀), Li Yan (李艳), Wang Xin (王鑫), Ding Hongrui (丁竑瑞), Zeng Cuiping (曾翠平), Hao Ruixia (郝瑞霞), Wang Changqiu (王长秋). The utilization of solar energy by non-phototrophic microorganisms through semiconducting minerals [J]. Microbiology China (微生物学通报), 2013, 40 (1): 190-202 |
[71] | Rodríguez M, Abderrazik N B, Contreras S, Chamarro E, Gimenez J, Esplugas S. Iron(Ⅲ) photooxidation of organic compounds in aqueous solutions [J]. Applied Catalysis B: Environmental, 2002, 37 (2): 131-137 |
[72] | Ding Hongrui (丁竑瑞), Li Yan (李艳), Lu Anhuai (鲁安怀), Wang Changqiu (王长秋). Primary study of pollutant reduction with microbe- rutile synergetic catalytic system [J]. Acta Mineralogica Sinica (矿物学报), 2010 (S1): 200-201 |
[73] | Motoda S, Strom M, Dexter S C. Power density profile of marine biofilm battery using a TiO2 anode [J]. ECS Transactions, 2010, 25 (35): 3-10 |
[74] | Motoda S, Uematsu S, Shinohara T. Influence of impurities in TiO2 coatings on electrode potential of photocatalytic anode assembling to marine microbial fuel cell [J]. ECS Transactions, 2012, 41 (31): 129-136 |
[75] | Wang H F, Qian F, Wang G M, Jiao Y Q, He Z, Li Y. Self-biased solar-microbial device for sustainable hydrogen generation [J]. ACS Nano, 2013, 7 (10): 8728-8735 |
[76] | Yuan S J, Sheng G P, Li W W, Lin Z Q, Zeng R J, Tong Z H, Yu H Q. Degradation of organic pollutants in a photoelectrocatalytic system enhanced by a microbial fuel cell [J]. Environmental Science & Technology, 2010, 44 (14): 5575-5580 |
[77] | Qian F, Wang H Y, Ling Y C, Wang G M, Thelen M P, Li Y. Photoenhanced electrochemical interaction between shewanella and a hematite nanowire photoanode [J]. Nanoletter, 2014, 14 (6): 3688-3693 |
[78] | Cheng S A, Jang J H, Dempsey B A, Logan B E. Efficient recovery of nano-sized iron oxide particles from synthetic acid-mine drainage (AMD) water using fuel cell technologies [J]. Water Research, 2011, 45 (1): 303-307 |
[79] | Han L, Bai L, Zhu C Z, Wang Y Z, Dong S J. Improving the performance of a membraneless and mediatorless glucose-air biofuel cell with a TiO2 nanotube photoanode [J]. Chemical Communications, 2012, 48 (49): 6103-6105 |
[80] | Lu Anhuai (鲁安怀). Synergetic reaction of mine and microorganism [J]. Acta Mineralogica Sinica (矿物学报), 2012 (S1): 6-7 |
[81] | Yan Lili (闫丽丽), Wang Yan (王艳), Xiong Liangbin (熊良斌), et al. Preparation and photocatalytic sterilization property of Cu2O nanostructure with copper anode oxidation method [J]. Chinese Journal of Inorganic Chemistry (无机化学学报), 2009, 25 (11): 1960-1964 |
[82] | Anta J A, Guillén E, Tena-Zaera Rn. ZnO-based dye-sensitized solar cells [J]. The Journal of Physical Chemistry C, 2012, 116 (21): 11413-11425 |
[83] | Chen Y L, Chen Y S, Chan H, Tseng Y H, Yang S R, Tsai H Y, Liu H Y, Sun D S, Chang H H. The use of nanoscale visible light-responsive photocatalyst TiO2-Pt for the elimination of soil-borne pathogens [J]. PloS One, 2012, 7 (2): 31212-31223 |
[84] | Chen S F, Li J P, Qian K, Xu W P, Lu Y, Huang W X, Yu S H. Large scale photochemical synthesis of M@ TiO2 nanocomposites (M Ag, Pd, Au, Pt) and their optical properties, CO oxidation performance, and antibacterial effect [J]. Nano Research, 2010, 3 (4): 244-255 |
[85] | Wang Yan (王彦), Su Huidong (苏会东), Xu Xuepeng (胥学鹏). Study on photocatalytic disinfection by TiO2 immobilized on active carbon [J]. Environmental Protection Science (环境保护科学), 2007, 33 (4): 40-42 |
[86] | Li Yafeng (李亚峰), Zhao Yanhong (赵艳红), Chen Ping (陈平), Zhao Jie (赵洁), Liu Juan (刘娟), Lin Qiang (林强). Preparation of the immobilized TiO2 activator and the experimental study on its photo activity [J]. Journal of Shenyang Jianzhu University: Natural Science (沈阳建筑大学学报:自然科学版), 2008, 24 (1): 123-128 |
[87] | Tang Bin (汤斌), Zhang Qingqing (张庆庆), Xue Zhenglian (薛正莲), Tao Yugui (陶玉贵), Huang Xiaodong (黄晓东). The preparation of Ag/TiO2 polypropylene membrane and its photocatalytic and antibacterial property [J]. Photographic Science and Photochemistry (感光科学与光化学), 2005, 23 (5): 382-388 |
[88] | Karunakaran C, SakthiRaadha S, Gomathisankar P. Hot-injection synthesis of bactericidal Sn-doped TiO2 nanospheres for visible-light photocatalysis [J]. Materials Express, 2012, 2 (4): 319-326 |
[89] | Suri R P, Thornton H M, Muruganandham M. Disinfection of water using Pt- and Ag-doped TiO2 photocatalysts [J]. Environmental Technology, 2012, 33 (14): 1651-1659 |
[90] | Sikong L, Kongreong B, Kantachote D, Sutthisripok W. Photocatalytic activity and antibacterial behavior of Fe3+-doped TiO2/SnO2 nanoparticles [J]. Energy Research Journal, 2010, 1 (2): 120-125 |
[91] | Yeo M K, Kang M. The effect of nano-scale Zn-doped TiO2 and pure TiO2 particles on hydramagnipapillata [J]. Molecular & Cellular Toxicology, 2010, 6 (1): 9-17 |
[92] | Nair M G, Nirmala M, Rekha K, Anukaliani A. Structural, optical, photocatalytic and antibacterial activity of ZnO- and Co- doped ZnO nanoparticles [J]. Materials Letters, 2011, 65 (12): 1797-1800 |
[93] | Wu P, Xie R, Imlay K, Shang J K. Visible-light-induced bactericidal activity of titanium dioxide codoped with nitrogen and silver [J]. Environmental Science & Technology, 2010, 44 (18): 6992-6997 |
[94] | Hamal D B, Haggstrom J A, Marchin G L, Ikenberry M A, Hohn K, Klabunde K J. A multifunctional biocide/sporocide and photocatalyst based on titanium dioxide (TiO2) codoped with silver, carbon, and sulfur [J]. Langmuir, 2009, 26 (4): 2805-2810 |
[95] | Chen Qiang (陈强). Preparation and characterization of phosphor-doped titanium dioxide photocatalyst [D].Qingdao: Qingdao University of Science and Technology, 2007 |
[96] | Khalaphallah R. Greywater treatment for reuse by slow sand filtration: study of pathogenic microorganisms and phage survival [D]. Nantes: Ecole des Mines de Nantes, 2012 |
[97] | Zhou W, Liu H, Wang J, Liu D, Du G J, Cui J J. Ag2O/TiO2 nanobelts heterostructure with enhanced ultraviolet and visible photocatalytic activity [J]. ACS Applied Materials & Interfaces, 2010, 2 (8): 2385-2392 |
[98] | Rtimi S, Baghriche O, Pulgarin C, Sanjines R, Kiwi J. Design, testing and characterization of innovative TiN-TiO2 surfaces inactivating bacteria under low intensity visible light [J]. RSC Advances, 2012, 2 (23): 8591-8595 |
[99] | Gao P, Liu J, Zhang T, Sun D D, Ng W. Hierarchical TiO2/CdS “spindle-like” composite with high photodegradation and antibacterial capability under visible light irradiation [J]. Journal of Hazardous Materials, 2012, 229: 209-216 |
[100] | Begum G, Manna J, Rana R K. Controlled orientation in a bio-inspired assembly of Ag/AgCl/ZnO nanostructures enables enhancement in visible-light-induced photocatalytic performance [J]. Chem. -Eur. J., 2012, 18 (22): 6847-6853 |
[101] | Kim J K, Jang J R, Choi N, Hong D, Nam C H, Yoo P J, Park J H, Choe W S. Lysozyme-mediated biomineralization of titanium-tungsten oxide hybrid nanoparticles with high photocatalytic activity [J]. Chemical Communications, 2014, 50 (82): 12392-12395 |
[102] | Venkata Subhash G, Chandra R, Venkata Mohan S. Microalgae mediated bio-electrocatalytic fuel cell facilitates bioelectricity generation through oxygenic photomixotrophic mechanism [J]. Bioresource Technology, 2013, 136: 644-653 |
[1] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[2] | 段重达, 姚小伟, 朱家华, 孙静, 胡南, 李广悦. 环境因素对克雷白氏杆菌诱导碳酸钙沉淀的影响[J]. 化工学报, 2023, 74(8): 3543-3553. |
[3] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[4] | 邢美波, 张中天, 景栋梁, 张洪发. 磁调控水基碳纳米管协同多孔材料强化相变储/释能特性[J]. 化工学报, 2023, 74(7): 3093-3102. |
[5] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[6] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[7] | 董茂林, 陈李栋, 黄六莲, 吴伟兵, 戴红旗, 卞辉洋. 酸性助水溶剂制备木质纳米纤维素及功能应用研究进展[J]. 化工学报, 2023, 74(6): 2281-2295. |
[8] | 朱理想, 罗默也, 张晓东, 龙涛, 余冉. 醌指纹法指示三氯乙烯污染土功能微生物活性应用研究[J]. 化工学报, 2023, 74(6): 2647-2654. |
[9] | 杨琴, 秦传鉴, 李明梓, 杨文晶, 赵卫杰, 刘虎. 用于柔性传感的双形状记忆MXene基水凝胶的制备及性能研究[J]. 化工学报, 2023, 74(6): 2699-2707. |
[10] | 刘远超, 蒋旭浩, 邵钶, 徐一帆, 钟建斌, 李耑. 几何尺寸及缺陷对石墨炔纳米带热输运特性的影响[J]. 化工学报, 2023, 74(6): 2708-2716. |
[11] | 张永泉, 玄伟伟. 碱金属/(FeO+CaO+MgO)对硅酸盐灰熔渣结构和黏度的影响机理[J]. 化工学报, 2023, 74(4): 1764-1771. |
[12] | 毕浩然, 张洋, 王凯, 徐晨晨, 霍奕影, 陈必强, 谭天伟. 微生物制造绿色化学品研究进展[J]. 化工学报, 2023, 74(1): 1-13. |
[13] | 刘昕, 戈钧, 李春. 光驱动微生物杂合系统提高生物制造水平[J]. 化工学报, 2023, 74(1): 330-341. |
[14] | 张静, 刘涛, 张伟, 储震宇, 金万勤. 一种新型分离传感膜的制备及其血糖的动态监测[J]. 化工学报, 2023, 74(1): 459-468. |
[15] | 黄心童, 耿宇昊, 刘恒源, 陈卓, 徐建鸿. 微流控制备新型功能纳米粒子研究进展[J]. 化工学报, 2023, 74(1): 355-364. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||