化工学报 ›› 2017, Vol. 68 ›› Issue (S1): 18-25.DOI: 10.11949/j.issn.0438-1157.20170590
马良, 陈楷炫, 莫冬传, 符远翔, 吕树申
收稿日期:
2017-05-10
修回日期:
2017-05-17
出版日期:
2017-08-31
发布日期:
2017-08-31
通讯作者:
符远翔,fuyx8@mail.sysu.edu.cn
基金资助:
国家自然科学基金项目(51676212);广东省自然科学基金项目(2014A030312009)。
MA Liang, CHEN Kaixuan, MO Dongchuan, FU Yuanxiang, LÜ Shushen
Received:
2017-05-10
Revised:
2017-05-17
Online:
2017-08-31
Published:
2017-08-31
Supported by:
supported by the National Natural Science Foundation of China (51676212) and the Natural Science Foundation of Guangdong Province (2014A030312009).
摘要:
石墨烯是一种具有超大的比表面积、良好的热和化学稳定性、超高的热导率以及易于化学修饰的蜂窝状单层碳材料,已作为填料广泛应用于导热高分子复合材料领域。近年来石墨烯导热高分子材料的研究重点是改善石墨烯在聚合物基体中的界面相容性和分散性能。阐述了近年来石墨烯导热高分子复合材料的制备方法及其热性能,并重点对石墨烯导热高分子复合材料的导热机理进行综述,同时结合研究现状对石墨烯导热高分子复合材料的研究方向进行展望。
中图分类号:
马良, 陈楷炫, 莫冬传, 符远翔, 吕树申. 石墨烯导热高分子复合材料的制备、性能与机理[J]. 化工学报, 2017, 68(S1): 18-25.
MA Liang, CHEN Kaixuan, MO Dongchuan, FU Yuanxiang, LÜ Shushen. Preparation,properties and mechanism of thermal conductive graphene/polymer composites[J]. CIESC Journal, 2017, 68(S1): 18-25.
[1] | SANADA K,TADA Y,SHINDO Y. Thermal conductivity of polymer composites with close-packed structure of nano and micro fillers[J]. Composites Part A:Applied Science & Manufacturing,2009,40(6/7):724-730. |
[2] | KALAITZIDOU K,FUKUSHIMA H,DRZAL L T. Multifunctional polypropylene composites produced by incorporation of exfoliated graphite nanoplatelets[J]. Carbon,2007,45(7):1446-1452. |
[3] | QIAN X,YU B,BAO C,et al. Silicon nanoparticle decorated graphene composites:preparation and their reinforcement on the fire safety and mechanical properties of polyuria[J]. Journal of Materials Chemistry A,2013,1(34):9827-9836. |
[4] | ZHANG J,XU Y,CUI L,et al. Mechanical properties of graphene films enhanced by homo-telechelic functionalized polymer fillers via π-π stacking interactions[J]. Composites Part A:Applied Science & Manufacturing,2015,71(1):1-8. |
[5] | CHEN J K,HUANG I S. Thermal properties of aluminum-graphite composites by powder metallurgy[J]. Composites Part B:Engineering,2013,44(1):698-703. |
[6] | YANG W,ZHOU L,PENG K,et al. Effect of tungsten addition on thermal conductivity of graphite/copper composites[J]. Composites Part B:Engineering,2013,55(1):1-4. |
[7] | BODEN A,BOERNER B,KUSCH P,et al. Nanoplatelet size to control the alignment and thermal conductivity in copper-graphite composites[J]. Nano Letters,2014,14(6):3640-3644. |
[8] | ZHOU C,CHEN D,ZHANG X B,et al. The roles of geometry and topology structures of graphite fillers on thermal conductivity of the graphite/aluminum composites[J]. Physics Letters A,2015,379(5):452-457. |
[9] | WANG H,GUO Q,YANG J,et al. Microstructure and thermophysical properties of B4C/graphite composites containing substitutional boron[J]. Carbon,2013,52(2):10-16. |
[10] | YAO Y,ZENG X,WANG F,et al. Significant enhancement of thermal conductivity in bioinspired freestanding boron nitride papers filled with graphene oxide[J]. Chemistry of Materials,2016,80(10):1357-1359. |
[11] | NOVOSELOV K S,GEIM A K,MOROZOV S V,et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666-669. |
[12] | BALANDIN A A,GHOSH S,BAO W,et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters,2008,8(3):902-907. |
[13] | SHAHIL K M F,BALANDIN A A. Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials[J]. Nano Letters,2012,12(2):861-867. |
[14] | NOVOSELOV K S,JIANG D,SCHEDIN F,et al. Two-dimensional atomic crystals[J]. Proceedings of the National Academy of Sciences of the United States of America,2005,102(30):10451-10453. |
[15] | YE C M,SHENTU B Q,WENG Z X. Thermal conductivity of high density polyethylene filled with graphite[J]. Journal of Applied Polymer Science,2006,101(6):3806-3810. |
[16] | WANG S,TAMBRAPARNI M,QIU J,et al. Thermal expansion of graphene composites[J]. Macromolecules,2009,42(14):5251-5255. |
[17] | FU Y X,WANG X M,MO D C,et al. Production of monolayer,trilayer,and multi-layer graphene sheets by a re-expansion and exfoliation method[J]. Journal of Materials Science,2014,49(5):2315-2323. |
[18] | ARABY S,ZHANG L,KUAN H C,et al. A novel approach to electrically and thermally conductive elastomers using grapheme[J]. Polymer,2013,54(14):3663-3670. |
[19] | HUNG M T,CHOI O,JU Y S,et al. Heat conduction in graphite-nanoplatelet-reinforced polymer nanocomposites[J]. Applied Physics Letters,2006,89(2):023117-1-023117-3. |
[20] | SONG W L,VECA L M,KONG C Y,et al. Polymeric nanocomposites with graphene sheets-materials and device for superior thermal transport properties[J]. Polymer,2012,53(18):3910-3916. |
[21] | KIM K S,ZHAO Y,JANG H,et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature,2009,457(7230):706-710. |
[22] | BERGER C,SONG Z,LI X,et al. Electronic confinement and coherence in patterned epitaxial graphene[J]. Science,2006,312(5777):1191-1196. |
[23] | SAW W P S,MARIATTI M. Properties of synthetic diamond and graphene nanoplatelet-filled epoxy thin film composites for electronic applications[J]. Journal of Materials Science Materials in Electronics,2012,23(4):817-824. |
[24] | SONG W L,WANG W,VECA L M,et al. Polymer/carbon nanocomposites for enhanced thermal transport properties-carbon nanotubes versus graphene sheets as nanoscale fillers[J]. Journal of Materials Chemistry,2012,22(33):17133-17139. |
[25] | MIN C,YU D,CAO J,et al. A graphite nanoplatelet/epoxy composite with high dielectric constant and high thermal conductivity[J]. Carbon,2013,55(2):116-125. |
[26] | KIM S Y,YE J N,YU J. Thermal conductivity of graphene nanoplatelets filled composites fabricated by solvent-free processing for the excellent filler dispersion and a theoretical approach for the composites containing the geometrized fillers[J]. Composites Part A:Applied Science & Manufacturing,2015,69(1):219-225. |
[27] | YU J,QIAN R,JIANG P. Enhanced thermal conductivity for PVDF composites with a hybrid functionalized graphene sheet-nanodiamond filler[J]. Fibers & Polymers,2013,14(8):1317-1323. |
[28] | VASILEIOU A A,KONTOPOULOU M,DOCOSLIS A. A noncovalent compatibilization approach to improve the filler dispersion and properties of polyethylene/graphene composites[J]. ACS Applied Material & Interfaces,2014,6(3):1916-1925. |
[29] | CHATTERJEE S,WANG J W,KUO W S,et al. Mechanical reinforcement and thermal conductivity in expanded graphene nanoplatelets reinforced epoxy composites[J]. Chemical Physics Letters,2012,531(13):6-10. |
[30] | DENG S,LIN Z,XU B,et al. Isothermal crystallization kinetics,morphology,and thermal conductivity of graphene nanoplatelets/polyphenylene sulfide composites[J]. Journal of Thermal Analysis & Calorimetry,2014,118(1):197-203. |
[31] | CHOI J Y,KIM S W,CHO K Y. Improved thermal conductivity of graphene encapsulated poly(methyl methacrylate) nanocomposite adhesives with low loading amount of grapheme[J]. Composites Science & Technology,2014,94(4):147-154. |
[32] | RAZA M A,WESTWOOD A V K,STIRLING C. Effect of processing technique on the transport and mechanical properties of graphite nanoplatelet/rubbery epoxy composites for thermal interface applications[J]. Materials Chemistry & Physics,2012,132(1):63-73. |
[33] | RAZA M A,WESTWOOD A,BROWN A,et al. Characterisation of graphite nanoplatelets and the physical properties of graphite nanoplatelet/silicone composites for thermal interface applications[J]. Carbon,2011,49(13):4269-4279. |
[34] | DING P,SU S,SONG N,et al. Highly thermal conductive composites with polyamide-6 covalently-grafted graphene by an in situ polymerization and thermal reduction process[J]. Carbon,2014,66(3):576-584. |
[35] | FU Y X,HE Z X,MO D C,et al. Thermal conductivity enhancement of epoxy adhesive using graphene sheets as additives[J]. International Journal of Thermal Sciences,2014,86(1):276-283. |
[36] | OYA T,NOMURA T,TSUBOTA M,et al. Thermal conductivity enhancement of erythritol as PCM by using graphite and nickel particles[J]. Applied Thermal Engineering,2013,61(2):825-828. |
[37] | FUKUSHIMA H,DRZAL L T,ROOK B P,et al. Thermal conductivity of exfoliated graphite nanocomposites[J]. Journal of Thermal Analysis & Calorimetry,2006,85(1):235-238. |
[38] | GANGULI S,ROY A K,ANDERSON D P. Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites[J]. Carbon,2008,46(5):806-817. |
[39] | YU A,RAMESH P,ITKIS M E,et al. graphite nanoplatelet-epoxy composite thermal interface materials[J]. Journal of Physical Chemistry C,2007,111(21):084504-084508. |
[40] | GU J,CHAO XIE,LI H,et al. Thermal percolation behavior of graphene nanoplatelets/polyphenylene sulfide thermal conductivity composites[J]. Polymer Composites,2013,35(6):1087-1092. |
[41] | HUANG X,ZHI C,JIANG P. Toward effective synergetic effects from graphene nanoplatelets and carbon nanotubes on thermal conductivity of ultrahigh volume fraction nanocarbon epoxy composites[J]. Journal of Physic Chemistry C,2012,116(44):23812-23820. |
[42] | XU B F,LIN Z D,DU C M,et al. Mechanical properties,morphology and thermal conductivity of polyamide composites filled with graphene nanoplatelets,Al2O3 and graphite[J]. Material Research Innovations,2015,19(S1):388-391. |
[43] | LUO W,CHENG C,ZHOU S,et al. Thermal,electrical and rheological behavior of high-density polyethylene/graphite composites[J]. Iranian Polymer Journal,2015,24(7):1-9. |
[44] | ZHOU S,YU L,SONG X,et al. Preparation of highly thermally conducting polyamide 6/graphite composites via low-temperature in situ expansion[J]. Journal of Applied Polymer Science,2014,131(1):1-15. |
[45] | CHU K,LI W S,DONG H. Role of graphene waviness on the thermal conductivity of graphene composites[J]. Applied Physics A,2012,111(1):221-225. |
[46] | CHU K,LI W S,TANG F L. Flatness-dependent thermal conductivity of graphene-based composites[J]. Physics Letters A,2013,377(12):910-914. |
[47] | FU Y X,HE Z X,MO D C,et al. Thermal conductivity enhancement with different fillers for epoxy resin adhesives[J]. Applied Thermal Engineering,2014,66(2):493-498. |
[48] | TENG C C,MA C C M,LU C H,et al. Thermal conductivity and structure of non-covalent functionalized graphene/epoxy composites[J]. Carbon,2011,49(15):5107-5116. |
[49] | TANG Z,KANG H,SHEN Z,et al. Grafting of polyester onto graphene for electrically and thermally conductive composites[J]. Macromolecules,2012,45(45):3444-3451. |
[50] | LI S,QI S,LIU N,et al. Preparation and thermal conductivity of novolac/Ni/graphite nanosheet composites[J]. Journal of Applied Polymer Science,2012,124(5):4403-4408. |
[51] | SONG S H,PARK K H,BO H K,et al. Enhanced thermal conductivity of epoxy-graphene composites by using non-oxidized graphene flakes with non-covalent functionalization[J]. Advanced Materials,2013,25(5):732-737. |
[52] | CAO L,LIU X,NA H,et al. How a bio-based epoxy monomer enhanced the properties of diglycidyl ether of bisphenol A (DGEBA)/graphene composites[J]. Journal of Material Chemistry A,2013,1(16):5081-5088. |
[53] | HSU C H,HSU M H,CHANG K C,et al. Physical study of room-temperature-cured epoxy/thermally reduced graphene oxides with various contents of oxygen-containing groups[J]. Polymer International,2014,63(10):1765-1770. |
[54] | ZHAO X,LI Y,WANG J,et al. Interactive oxidation-reduction reaction for the in situ synthesis of graphene-phenol formaldehyde composites with enhanced properties[J]. ACS Applied Materials & Interfaces,2014,6(6):4254-4263. |
[55] | CHO E C,HUANG J H,LI C P,et al. Graphene-based thermoplastic composites and their application for LED thermal management[J]. Carbon,2016,102:66-73. |
[56] | ZONG P,FU J,CHEN L,et al. Effect of aminopropylisobutyl polyhedral oligomeric silsesquioxane functionalized graphene on the thermal conductivity and electrical insulation properties of epoxy composites[J]. RSC Advances,2016,6(13):10498-10506. |
[57] | GHOSE S,WATSON K A,DELOZIER D M,et al. Thermal conductivity of UltemTM/carbon nanofiller blends[J]. High Performance Polymers,2006,18(6):961-977. |
[58] | KIM J H,KIM G H. Effect of orientation and content of carbon based fillers on thermal conductivity of ethylene-propylene-diene/filler composites[J]. Journal of Applied Polymer Science,2014,131(21):8558-8572. |
[59] | BURGER N,LAACHACHI A,MORTAZAVI B,et al. Alignments and network of graphite fillers to improve thermal conductivity of epoxy-based composites[J]. International Journal of Heat & Mass Transfer,2015,89(3):505-513. |
[60] | YAN H,WANG R,LI Y,et al. Thermal conductivity of magnetically aligned graphene-polymer composites with Fe3O4-decorated graphene nanosheets[J]. Journal of Electronic Materials,2014,44(2):658-666. |
[61] | YU A,RAMESH P,SUN X,et al. Enhanced thermal conductivity in a hybrid graphite nanoplatelet-carbon nanotube filler for epoxy composites[J]. Advanced Materials,2008,20(20):4740-4744. |
[62] | YANG S Y,LIN W N,HUANG Y L,et al. Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites[J]. Carbon,2011,49(3):793-803. |
[63] | IM H,KIM J. Thermal conductivity of a graphene oxide-carbon nanotube hybrid/epoxy composite[J]. Carbon,2012,50(15):5429-5440. |
[64] | ZHOU S,XU J,YANG Q H,et al. Experiments and modeling of thermal conductivity of flake graphite/polymer composites affected by adding carbon-based nano-fillers[J]. Carbon,2013,57(2):452-459. |
[65] | SONG P,LIU L,FU S,et al. Striking multiple synergies created by combining reduced graphene oxides and carbon nanotubes for polymer nanocomposites[J]. Nanotechnology,2013,24(12):176-181. |
[66] | CHANG H P,LIU H C,TAN C S. Using supercritical CO2-assisted mixing to prepare graphene/carbon nanotube/epoxy nanocomposites[J]. Polymer,2015,75(1):125-133. |
[67] | ARABY S,SABER N,MA X,et al. Implication of multi-walled carbon nanotubes on polymer/graphene composites[J]. Materials & Design,2014,65(3):690-699. |
[68] | QIAN R,YU J,WU C,et al. Alumina-coated graphene sheet hybrids for electrically insulating polymer composites with high thermal conductivity[J]. RSC Advances,2013,3(38):17373-17379. |
[69] | DU F P,YANG W,ZHANG F,et al. Enhancing the heat transfer efficiency in graphene-epoxy nanocomposites using a magnesium oxide-graphene hybrid structure[J]. ACS Applied Materials & Interfaces,2015,7(26):14397-14403. |
[70] | LI W,FENG W,HUANG H Y. High-performance epoxy resin/silica coated flake graphite composites for thermal conductivity and electrical insulation[J]. Journal of Materials Science Materials in Electronics,2016,27(6):6364-6370. |
[71] | EKSIK O,BARTOLUCCI S F,GUPTA T,et al. A novel approach to enhance the thermal conductivity of epoxy nanocomposites using graphene core-shell additives[J]. Carbon,2016,101(1):239-244. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[3] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[4] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[5] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[6] | 张澳, 罗英武. 低模量、高弹性、高剥离强度丙烯酸酯压敏胶[J]. 化工学报, 2023, 74(7): 3079-3092. |
[7] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[8] | 邢美波, 张中天, 景栋梁, 张洪发. 磁调控水基碳纳米管协同多孔材料强化相变储/释能特性[J]. 化工学报, 2023, 74(7): 3093-3102. |
[9] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[10] | 董茂林, 陈李栋, 黄六莲, 吴伟兵, 戴红旗, 卞辉洋. 酸性助水溶剂制备木质纳米纤维素及功能应用研究进展[J]. 化工学报, 2023, 74(6): 2281-2295. |
[11] | 崔张宁, 胡紫璇, 吴雷, 周军, 叶干, 刘田田, 张秋利, 宋永辉. 可降解纤维素基材料的耐水性能研究进展[J]. 化工学报, 2023, 74(6): 2296-2307. |
[12] | 杨琴, 秦传鉴, 李明梓, 杨文晶, 赵卫杰, 刘虎. 用于柔性传感的双形状记忆MXene基水凝胶的制备及性能研究[J]. 化工学报, 2023, 74(6): 2699-2707. |
[13] | 刘远超, 蒋旭浩, 邵钶, 徐一帆, 钟建斌, 李耑. 几何尺寸及缺陷对石墨炔纳米带热输运特性的影响[J]. 化工学报, 2023, 74(6): 2708-2716. |
[14] | 李振, 张博, 王丽伟. PEG-EG固-固相变材料的制备和性能研究[J]. 化工学报, 2023, 74(6): 2680-2688. |
[15] | 蔡斌, 张效林, 罗倩, 党江涛, 左栗源, 刘欣梅. 导电薄膜材料的研究进展[J]. 化工学报, 2023, 74(6): 2308-2321. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||