化工学报 ›› 2018, Vol. 69 ›› Issue (1): 175-187.DOI: 10.11949/j.issn.0438-1157.20171308
耿淑君1, 黄青山1,2, 朱全红1, 金永成1, 杨超1,2
收稿日期:
2017-09-27
修回日期:
2017-11-20
出版日期:
2018-01-05
发布日期:
2018-01-05
通讯作者:
杨超
基金资助:
国家重点研发计划项目(2016YFB0301701);国家自然科学基金项目(91434114,21376254);中国科学院科研装备研制项目(YZ201641)。
GENG Shujun1, HUANG Qingshan1,2, ZHU Quanhong1, JIN Yongcheng1, YANG Chao1,2
Received:
2017-09-27
Revised:
2017-11-20
Online:
2018-01-05
Published:
2018-01-05
Contact:
10.11949/j.issn.0438-1157.20171308
Supported by:
supported by the National Key Research and Development Program of China (2016YFB0301701), the National Natural Science Foundation of China (91434114, 21376254) and the Instrument Developing Project of the Chinese Academy of Sciences (YZ201641).
摘要:
共沉淀法可高效、低能耗制备出较高纯度的球形层状LiNi1-x-yCoxMnyO2正极材料,广泛应用于基础研究和工业生产中,主要包括液相共沉淀及高温煅烧过程。对这两个过程中涉及的机理进行了阐述,并分析相关影响因素,考察了共沉淀制备前体这个关键步骤中颗粒成核过程以及Ni、Co、Mn 3种金属离子发生的络合及沉淀反应。通过建立的反应和热力学平衡方程,分析未沉淀的3种金属离子及其相互之间比值随pH和氨水加入量的二维变化,首次定量得出制备所需Ni、Co、Mn配比三元正极材料的理论最佳条件。此外,从前体及正极材料的结构特性以及最终材料的电化学活性出发,定性探究了最优操作条件。最后,展望了三元正极材料工艺条件优化的科学方法。
中图分类号:
耿淑君, 黄青山, 朱全红, 金永成, 杨超. 共沉淀法制备LiNi1-x-yCoxMnyO2正极材料工艺条件探究[J]. 化工学报, 2018, 69(1): 175-187.
GENG Shujun, HUANG Qingshan, ZHU Quanhong, JIN Yongcheng, YANG Chao. Investigation on synthesis conditions of LiNi1-x-yCoxMnyO2 cathode material via co-precipitation[J]. CIESC Journal, 2018, 69(1): 175-187.
[1] | LIU J, ZHANG J G, YANG Z G, et al. Materials science and materials chemistry for large scale electrochemical energy storage:from transportation to electrical grid[J]. Advanced Functional Materials, 2013, 23(8):929-946. |
[2] | THACKERAY M M, WOLVERTON C, ISAACS E D. Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries[J]. Energy & Environmental Science, 2012, 5(7):7854-7863. |
[3] | LIU J J, QIU W H, YU L Y, et al. Synthesis and electrochemical characterization of layered Li(Ni1/3Co1/3Mn1/3)O2 cathode materials by low-temperature solid-state reaction[J]. Journal of Alloys and Compounds, 2008, 449(1):326-330. |
[4] | REN H B, LI X, PENG Z H. Electrochemical properties of Li[Ni1/3Mn1/3Al1/3-xCox]O2 as a cathode material for lithium ion battery[J]. Electrochimica Acta, 2011, 56(20):7088-7091. |
[5] | JEON H J, MONIM S A, KANG C S, et al. Synthesis of Lix[Ni0.225Co0.125Mn0.65]O2 as a positive electrode for lithium-ion batteries by optimizing its synthesis conditions via a hydroxide co-precipitation method[J]. Journal of Physics and Chemistry of Solids, 2013, 74(9):1185-1195. |
[6] | LU Z H, MACNEIL D D, DAHN J R. Layered Li[NixCo(1-2x)Mnx]O2 cathode materials for lithium-ion batteries[J]. Electrochemical and Solid-State Letters, 2001, 4(12):A200-A203. |
[7] | MACNEIL D D, LU Z, DAHN J R. Structure and electrochemistry of Li[NixCo1-2xMnx]O2(0 ≤ x ≤ 1/2)[J]. Journal of the Electrochemical Society, 2002, 149(10):A1332-A1336. |
[8] | SUN Y C, OUYANG C Y, WANG Z X, et al. Effect of co content on rate performance of LiMn0.5-xCo2xNi0.5-xO2 cathode materials for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2004, 151(4):A504-A508. |
[9] | LIANG C P, LONGO R C, KONG F T, et al. Obstacles toward unity efficiency of LiNi1-2xCoxMnxO2(x=0-1/3) (NCM) cathode materials:insights from ab initio calculations[J]. Journal of Power Sources, 2017, 340:217-228. |
[10] | LIANG C P, KONG F T, LONGO R C, et al. Unraveling the origin of instability in Ni-Rich LiNi1-2xCoxMnxO2(NCM) cathode materials[J]. Journal of Physical Chemistry C, 2016, 120(12):6383-6393. |
[11] | LU Z H, MACNEIL D D, DAHN J R. Layered cathode materials Li[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2 for lithium-ion batteries[J]. Electrochemical and Solid-State Letters, 2001, 7(12):A503-A506. |
[12] | KOBAYASHI H, ARACHI Y, EMURA S, et al. Investigation on lithium de-intercalation mechanism for Li1-yNi1/3Mn1/3Co1/3O2[J]. Journal of Power Sources, 2005, 146(1):640-644. |
[13] | SUN Y K, MYUNG S T, PARK B C, et al. High-energy cathode material for long-life and safe lithium batteries[J]. Nature Materials, 2009, 8(4):320-324. |
[14] | LIM J H, BANG H, LEE K S, et al. Electrochemical characterization of Li2MnO3-Li[Ni1/3Co1/3Mn1/3]O2-LiNiO2 cathode synthesized via co-precipitation for lithium secondary batteries[J]. Journal of Power Sources, 2009, 189(1):571-575. |
[15] | GUO H J, LIANG R F, XIN-HAI L I, et al. Effect of calcination temperature on characteristics of LiNiCoMnO cathode for lithium ion batteries[J]. Transactions of Nonferrous Metals Society of China, 2007, 17(6):1307-1311. |
[16] | PARK S H, OH S W, SUN Y K. Synthesis and structural characterization of layered Li[Ni1/3+xCo1/3Mn1/3-2xMox]O2 cathode materials by ultrasonic spray pyrolysis[J]. Journal of Power Sources, 2005, 146(1/2):622-625. |
[17] | ZHENG J M, WU X B, YANG Y. A comparison of preparation method on the electrochemical performance of cathode material Li[Li0.2Mn0.54Ni0.13Co0.13] O2 for lithium ion battery[J]. Electrochimica Acta, 2011, 56(8):3071-3078. |
[18] | NIELSEN A E. Kinetics of Precipitation[M]. New York:Pergamon Press, 1964. |
[19] | LEE M H, KANG Y J, MYUNG S T, et al. Synthetic optimization of Li[Ni1/3Co1/3Mn1/3]O2 via co-precipitation[J]. Electrochimica Acta, 2004, 50(4):939-948. |
[20] | NOH M, CHO J. Optimized synthetic conditions of LiNi0.5Co0.2Mn0.3O2 cathode materials for high rate lithium batteries via co-precipitation method[J]. Journal of the Electrochemical Society, 2013, 160(1):A105-A111. |
[21] | CHO T H, PARK S M, YOSHIO M, et al. Effect of synthesis condition on the structural and electrochemical properties of Li[Ni1/3Mn1/3Co1/3]O2 prepared by carbonate co-precipitation method[J]. Journal of Power Sources, 2005, 142(1/2):306-312. |
[22] | CHO T H, SHIOSAKI Y, NOGUCHI H. Preparation and characterization of layered LiMn1/3Ni1/3Co1/3O2 as a cathode material by an oxalate co-precipitation method[J]. Journal of Power Sources, 2006, 159(2):1322-1327. |
[23] | YU H J, QIAN Y M, OTANI M, et al. Study of the lithium/nickel ions exchange in the layered LiNi0.42Mn0.42Co0.16O2 cathode material for lithium ion batteries:experimental and first-principles calculations[J]. Energy & Environmental Science, 2014, 7(3):1068-1078. |
[24] | KOYAMA Y, ARAI H, TANAKA I, et al. Defect chemistry in layered LiMO2(M=Co, Ni, Mn, and Li1/3Mn2/3) by first-principles calculations[J]. Chemistry of Materials, 2012, 24(20):3886-3894. |
[25] | AURBACH D. Electrode-solution interactions in Li-ion batteries:a short summary and new insights[J]. Journal of Power Sources, 2003, 119/120/121:497-503. |
[26] | GU Y J, CHEN Y B, LIU H Q, et al. Structural characterization of layered LiNi0.85-xMnxCo0.15O2 with x=0, 0.1, 0.2 and 0.4 oxide electrodes for Li batteries[J]. Journal of Alloys and Compounds, 2011, 509(30):7915-7921. |
[27] | JOUANNEAU S, EBERMAN K W, KRAUSE L J, et al. Synthesis, characterization, and electrochemical behavior of improved Li[NixCo(1-2x)Mnx]O2(0.1 ≤ x ≤ 0.5)[J]. Journal of the Electrochemical Society, 2003, 150(12):A1637-A1642. |
[28] | KIM J M, CHUNG H T. Role of transition metals in layered Li[Ni,Co,Mn]O2 under electrochemical operation[J]. Electrochimica Acta, 2004, 49(21):3573-3580. |
[29] | OHZUKU T, UEDA A, NAGAYAMA M, et al. Comparative study of LiCoO2, LiNiCoO2 and LiNiO2 for 4 volt secondary lithium cells[J]. Electrochimica Acta, 1993, 38(9):1159-1167. |
[30] | DAHN J R, VON SACKEN U, MICHAL C A. Structure and electrochemistry of Li1±yNiO2 and a new Li2NiO2 phase with the Ni(OH)2 structure[J]. Solid State Ionics, 1990, 44(1):87-97. |
[31] | LUO X F, WANG X Y, LIAO L, et al. Effects of synthesis conditions on the structural and electrochemical properties of layered Li[Ni1/3Co1/3Mn1/3]O2 cathode material via the hydroxide co-precipitation method LIB SCITECH[J]. Journal of Power Sources, 2006, 161(1):601-605. |
[32] | LIU W, OH P, LIU X, et al. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries[J]. Angewandte Chemie, 2015, 54(15):4440-4457. |
[33] | SHAJU K M, RAO G V S, CHOWDARI B V R. Performance of layered Li(Ni1/3Co1/3Mn1/3)O2 as cathode for Li-ion batteries[J]. Electrochimica Acta, 2002, 48:145-151. |
[34] | KIM M H, SHIN H S, SHIN D, et al. Synthesis and electrochemical properties of Li[Ni0.8Co0.1Mn0.1]O2 and Li[Ni0.8Co0.2]O2 via co-precipitation[J]. Journal of Power Sources, 2006, 159(2):1328-1333. |
[35] | GU Y J, ZHANG Q G, CHEN Y B, et al. The thermodynamic analysis of Ni1/2Mn1/2(OH)2 prepared by hydroxide co-precipitation method[J]. Advanced Materials Research, 2013, 643:104-107. |
[36] | 顾琳, 王剑华, 郭玉忠, 等. 控制化学结晶法制备球形Ni(OH)2的热力学分析[J]. 南方金属, 2010, 173:10-14. GU L, WANG J H, GUO Y Z, et al. Thermodynamic analysis of the preparation of spherical Ni(OH)2 by controlled chemical crystallization[J]. Southern Metals, 2010, 173:10-14. |
[37] | 肖新颜, 叶永清. 共沉淀法合成Ni1/3Co1/3Mn1/3(OH)2的热力学分析[J]. 华南理工大学学报, 2010, 38(4):30-39. XIAO X Y, YE Y Q. Thermodynamic analysis of synthesis of Ni1/3Co1/3Mn1/3(OH)2 via co-precipitation[J]. Journal of South China University of Technology (Natural Science Edition), 2010, 38(4):30-39. |
[38] | SILLEN L G, MARTELL A E, BJERRUM J. Stability Constants of Metal-ion Complexes[M]. London, UK:the Chemical Society, 1971. |
[39] | YABUUCHI N, OHZUKU T. Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries[J]. Journal of Power Sources, 2003, 119/120/121:171-174. |
[40] | LUO X F, WANG X Y, LIAO L, et al. Synthesis and characterization of high tap-density layered Li[Ni1/3Co1/3Mn1/3]O2 cathode material via hydroxide co-precipitation[J]. Journal of Power Sources, 2006, 158(1):654-658. |
[41] | YOON J H, BANG H J, PRAKASH J, et al. Comparative study of Li[Ni1/3Co1/3Mn1/3]O2 cathode material synthesized via different synthetic routes for asymmetric electrochemical capacitor applications[J]. Materials Chemistry and Physics, 2008, 110(2/3):222-227. |
[42] | KONG J Z, ZHOU F, WANG C B, et al. Effects of Li source and calcination temperature on the electrochemical properties of LiNi0.5Co0.2Mn0.3O2 lithium-ion cathode materials[J]. Journal of Alloys and Compounds, 2013, 554:221-226. |
[43] | YUE P, WANG Z X, PENG W J, et al. Preparation and electrochemical properties of submicron LiNi0.6Co0.2Mn0.2O2 as cathode material for lithium ion batteries[J]. Scripta Materialia, 2011, 65(12):1077-1080. |
[44] | VU D L, LEE J W. Properties of LiNi0.8Co0.1Mn0.1O2 as a high energy cathode material for lithium-ion batteries[J]. Korean Journal of Chemical Engineering, 2015, 33(2):514-526. |
[45] | ZHENG X B, LI X H, ZHANG B, et al. Enhanced electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode materials obtained by atomization co-precipitation method[J]. Ceramics International, 2016, 42(1):644-649. |
[46] | LIANG L W, DU K, PENG Z, et al. Co-precipitation synthesis of Ni0.6Co0.2Mn0.2(OH)2 precursor and characterization of LiNi0.6Co0.2Mn0.2O2 cathode material for secondary lithium batteries[J]. Electrochimica Acta, 2014, 130:82-89. |
[47] | DENG C, LIU L, ZHOU W, et al. Effect of synthesis condition on the structure and electrochemical properties of Li[Ni1/3Mn1/3Co1/3]O2 prepared by hydroxide co-precipitation method[J]. Electrochimica Acta, 2008, 53(5):2441-2447. |
[48] | LI D C, SASAKI Y, KAGEYAMA M, et al. Structure, morphology and electrochemical properties of LiNi0.5Mn0.5-xCoxO2 prepared by solid state reaction[J]. Journal of Power Sources, 2005, 148(2):85-89. |
[49] | CHO J. LiNi0.74Co0.26-xMgxO2 cathode material for a Li-ion cell[J]. Chemistry of Materials, 2014, 12(10):3089-3094. |
[50] | LIU H W, TAN L. High rate performance of novel cathode material Li1.33Ni1/3Co1/3Mn1/3O2 for lithium ion batteries[J]. Materials Chemistry and Physics, 2011, 129(3):729-732. |
[51] | HUA C S, DU K, TAN C P, et al. Study of full concentration-gradient Li(Ni0.8Co0.1Mn0.1)O2 cathode material for lithium ion batteries[J]. Journal of Alloys and Compounds, 2014, 614:264-270. |
[52] | HUANG Y, WANG Z X, LI X H, et al. Synthesis of Ni0.8Co0.1Mn0.1(OH)2 precursor and electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode material for lithium batteries[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(7):2253-2259. |
[53] | ZHANG S, DENG C, FU B L, et al. Synthetic optimization of spherical Li[Ni1/3Mn1/3Co1/3]O2 prepared by a carbonate co-precipitation method[J]. Powder Technology, 2010, 198(3):373-380. |
[54] | HU C Y, GUO J, DU Y, et al. Effects of synthesis conditions on layered Li[Ni1/3Co1/3Mn1/3]O2 positive-electrode via hydroxide co-precipitation method for lithium-ion batteries[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(1):114-120. |
[55] | ZHANG Y, CAO H, ZHANG J, et al. Synthesis of LiNi0.6Co0.2Mn0.2O2 cathode material by a carbonate co-precipitation method and its electrochemical characterization[J]. Solid State Ionics, 2006, 177(37/38):3303-3307. |
[56] | YIN K, FANG W, ZHONG B, et al. The effects of precipitant agent on structure and performance of LiNi1/3Co1/3Mn1/3O2 cathode material via a carbonate co-precipitation method[J]. Electrochimica Acta, 2012, 85:99-103. |
[57] | ZHANG C F, YANG P, DAI X, et al. Synthesis of LiNi1/3Co1/3Mn1/3O2 cathode material via oxalate precursor[J]. Transactions of Nonferrous Metals Society of China, 2009, 19(3):635-641. |
[58] | LI L J, LI X H, WANG Z X, et al. A simple and effective method to synthesize layered LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium ion battery[J]. Powder Technology, 2011, 206(3):353-357. |
[59] | SHIN Y, CHOI W, HONG Y, et al. Investigation on the microscopic features of layered oxide Li[Ni1/3Co1/3Mn1/3]O2 and their influences on the cathode properties[J]. Solid State Ionics, 2006, 177(5/6):515-521. |
[60] | ZHONG S K, LI W, ZUO Z G, et al. Synthesis and electrochemical performances of LiNi0.6Co0.2Mn0.2O2 cathode materials[J]. Transactions of Nonferrous Metals Society of China, 2009, 19(6):1499-1503. |
[61] | LI L J, LI X H, WANG Z X, et al. Synthesis of LiNi0.8Co0.1Mn0.1O2 cathode material by chloride co-precipitation method[J]. Transactions of Nonferrous Metals Society of China, 2010, 20:279-282. |
[62] | XU Y H, FENG Q, KAJIYOSHI K, et al. Hydrothermal syntheses of layered lithium nickel manganese oxides from mixed layered Ni(OH)2-manganese oxides[J]. Chemistry of Materials, 2002, 14(9):3844-3851. |
[63] | YANG S Y, WANG X Y, YANG X K, et al. Influence of Li source on tap density and high rate cycling performance of spherical Li[Ni1/3Co1/3Mn1/3]O2 for advanced lithium-ion batteries[J]. Journal of Solid State Electrochemistry, 2011, 16(3):1229-1237. |
[64] | SHIN H, PARK S, BAE Y, et al. Synthesis of Li[NiCoMn]O cathode materials via a carbonate process[J]. Solid State Ionics, 2005, 176(35/36):2577-2581. |
[65] | CAO H, ZHANG Y, ZHANG J, et al. Synthesis and electrochemical characteristics of layered LiNiCoMnO cathode material for lithium ion batteries[J]. Solid State Ionics, 2005, 176(13/14):1207-1211. |
[66] | LIU J H, CHEN H Y, XIE J N, et al. Electrochemical performance studies of Li-rich cathode materials with different primary particle sizes[J]. Journal of Power Sources, 2014, 251:208-214. |
[67] | LI X Q, XIONG X H, WANG Z X, et al. Effect of sintering temperature on cycling performance and rate performance of LiNi0.8Co0.1Mn0.1O2[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(12):4023-4029. |
[68] | LI L, ZHANG X X, CHEN R J, et al. Synthesis and electrochemical performance of cathode material Li1.2Co0.13Ni0.13Mn0.54O2 from spent lithium-ion batteries[J]. Journal of Power Sources, 2014, 249:28-34. |
[69] | TODOROV Y M, NUMATA K. Effects of the Li:(Mn+Co+Ni) molar ratio on the electrochemical properties of LiMn1/3Co1/3Ni1/3O2 cathode material[J]. Electrochimica Acta, 2004, 50(2):495-499. |
[70] | ZHANG L Q, WANG X Q, MUTA T, et al. The effects of extra Li content, synthesis method, sintering temperature on synthesis and electrochemistry of layered LiNi1/3Mn1/3Co1/3O2[J]. Journal of Power Sources, 2006, 162(1):629-635.or lithium ion batteries[J]. Materials Chemistry and Physics, 2011, 129(3):729-732. |
[51] | HUA C S, DU K, TAN C P, et al. Study of full concentration-gradient Li(Ni0.8Co0.1Mn0.1)O2 cathode material for lithium ion batteries[J]. Journal of Alloys and Compounds, 2014, 614:264-270. |
[52] | HUANG Y, WANG Z X, LI X H, et al. Synthesis of Ni0.8Co0.1Mn0.1(OH)2 precursor and electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode material for lithium batteries[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(7):2253-2259. |
[53] | ZHANG S, DENG C, FU B L, et al. Synthetic optimization of spherical Li[Ni1/3Mn1/3Co1/3] O2 prepared by a carbonate co-precipitation method[J]. Powder Technology, 2010, 198(3):373-380. |
[54] | HU C Y, GUO J, DU Y, et al. Effects of synthesis conditions on layered Li[Ni1/3Co1/3Mn1/3] O2 positive-electrode via hydroxide co-precipitation method for lithium-ion batteries[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(1):114-120. |
[55] | ZHANG Y, CAO H, ZHANG J, et al. Synthesis of LiNi0.6Co0.2Mn0.2O2 cathode material by a carbonate co-precipitation method and its electrochemical characterization[J]. Solid State Ionics, 2006, 177(37-38):3303-3307. |
[56] | YIN K, FANG W, ZHONG B, et al. The effects of precipitant agent on structure and performance of LiNi1/3Co1/3Mn1/3O2 cathode material via a carbonate co-precipitation method[J]. Electrochimica Acta, 2012, 85:99-103. |
[57] | ZHANG C F, YANG P, DAI X, et al. Synthesis of LiNi1/3Co1/3Mn1/3O2 cathode material via oxalate precursor[J]. Transactions of Nonferrous Metals Society of China, 2009, 19(3):635-641. |
[58] | LI L J, LI X H, WANG Z X, et al. A simple and effective method to synthesize layered LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium ion battery[J]. Powder Technology, 2011, 206(3):353-357. |
[59] | SHIN Y, CHOI W, HONG Y, et al. Investigation on the microscopic features of layered oxide Li[Ni1/3Co1/3Mn1/3] O2 and their influences on the cathode properties[J]. Solid State Ionics, 2006, 177(5-6):515-521. |
[60] | ZHONG S K, LI W, ZUO Z G, et al. Synthesis and electrochemical performances of LiNi0.6Co0.2Mn0.2O2 cathode materials[J]. Transactions of Nonferrous Metals Society of China, 2009, 19(6):1499-1503. |
[61] | LI L J, LI X H, WANG ZX, et al. Synthesis of LiNi0.8Co0.1Mn0.1O2 cathode material by chloride co-precipitation method[J]. transactions of Nonferrous Metals Society of China, 2010, 20:279-282. |
[62] | XU Y H, FENG Q, KAJIYOSHI K, et al. Hydrothermal syntheses of layered lithium nickel manganese oxides from mixed layered Ni(OH)2-manganese oxides[J]. Chemistry of Materials, 2002, 14(9):3844-3851. |
[63] | YANG S Y, WANG X Y, YANG X K, et al. Influence of Li source on tap density and high rate cycling performance of spherical Li[Ni1/3Co1/3Mn1/3] O2 for advanced lithium-ion batteries[J]. Journal of Solid State Electrochemistry, 2011, 16(3):1229-1237. |
[64] | SHIN H, PARK S, BAE Y, et al. Synthesis of Li[NiCoMn]O cathode materials via a carbonate process[J]. Solid State Ionics, 2005, 176(35-36):2577-2581. |
[65] | LIU J H, CHEN H Y, XIE J N, et al. Electrochemical performance studies of Li-rich cathode materials with different primary particle sizes[J]. Journal of Power Sources, 2014, 251:208-214. |
[66] | CAO H, ZHANG Y, ZHANG J, et al. Synthesis and electrochemical characteristics of layered LiNiCoMnO cathode material for lithium ion batteries[J]. Solid State Ionics, 2005, 176(13-14):1207-1211. |
[67] | LI X Q, XIONG X H, WANG Z X, et al. Effect of sintering temperature on cycling performance and rate performance of LiNi0.8Co0.1Mn0.1O2[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(12):4023-4029. |
[68] | Li L, Zhang X X, Chen R J, et al. Synthesis and electrochemical performance of cathode material Li1.2Co0.13Ni0.13Mn0.54O2 from spent lithium-ion batteries[J]. Journal of Power Sources, 2014, 249:28-34. |
[69] | TODOROV Y M, NUMATA K. Effects of the Li:(Mn+Co+Ni) molar ratio on the electrochemical properties of LiMn1/3Co1/3Ni1/3O2 cathode material[J]. Electrochimica Acta, 2004, 50(2):495-499. |
[70] | ZHANG L Q, WANG X Q, MUTA T, et al. The effects of extra Li content, synthesis method, sintering temperature on synthesis and electrochemistry of layered LiNi1/3Mn1/3Co1/3O2[J]. Journal of Power Sources, 2006, 162(1):629-635. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 常明慧, 王林, 苑佳佳, 曹艺飞. 盐溶液蓄能型热泵循环特性研究[J]. 化工学报, 2023, 74(S1): 329-337. |
[3] | 张化福, 童莉葛, 张振涛, 杨俊玲, 王立, 张俊浩. 机械蒸汽压缩蒸发技术研究现状与发展趋势[J]. 化工学报, 2023, 74(S1): 8-24. |
[4] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[5] | 张曼铮, 肖猛, 闫沛伟, 苗政, 徐进良, 纪献兵. 危废焚烧处理耦合有机朗肯循环系统工质筛选与热力学优化[J]. 化工学报, 2023, 74(8): 3502-3512. |
[6] | 吴文涛, 褚良永, 张玲洁, 谭伟民, 沈丽明, 暴宁钟. 腰果酚生物基自愈合微胶囊的高效制备工艺研究[J]. 化工学报, 2023, 74(7): 3103-3115. |
[7] | 王志龙, 杨烨, 赵真真, 田涛, 赵桐, 崔亚辉. 搅拌时间和混合顺序对锂离子电池正极浆料分散特性的影响[J]. 化工学报, 2023, 74(7): 3127-3138. |
[8] | 卫雪岩, 钱勇. 微米级铁粉燃料中低温氧化反应特性及其动力学研究[J]. 化工学报, 2023, 74(6): 2624-2638. |
[9] | 朱风, 陈凯琳, 黄小凤, 鲍银珠, 李文斌, 刘嘉鑫, 吴玮强, 高王伟. KOH改性电石渣脱除羰基硫的性能研究[J]. 化工学报, 2023, 74(6): 2668-2679. |
[10] | 姚晓宇, 沈俊, 李健, 李振兴, 康慧芳, 唐博, 董学强, 公茂琼. 流体气液临界参数测量方法研究进展[J]. 化工学报, 2023, 74(5): 1847-1861. |
[11] | 陈科, 杜理, 曾英, 任思颖, 于旭东. 四元体系LiCl+MgCl2+CaCl2+H2O 323.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(5): 1896-1903. |
[12] | 毛元敬, 杨智, 莫松平, 郭浩, 陈颖, 罗向龙, 陈健勇, 梁颖宗. C6~C10烷醇的SAFT-VR Mie状态方程参数回归及其热物性研究[J]. 化工学报, 2023, 74(3): 1033-1041. |
[13] | 张雪婷, 胡激江, 赵晶, 李伯耿. 高分子量聚丙二醇在微通道反应器中的制备[J]. 化工学报, 2023, 74(3): 1343-1351. |
[14] | 程文婷, 李杰, 徐丽, 程芳琴, 刘国际. AlCl3·6H2O在FeCl3、CaCl2、KCl及KCl–FeCl3溶液中溶解度的实验及预测[J]. 化工学报, 2023, 74(2): 642-652. |
[15] | 靳志远, 单国荣, 潘鹏举. AM/AMPS/SSS三元共聚物的制备及耐温耐盐性能[J]. 化工学报, 2023, 74(2): 916-923. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||