[1] |
GE Z, SONG Z, GAO F. Review of recent research on data-based process monitoring[J]. Industrial & Engineering Chemistry Research, 2013, 52(10):3543-3562.
|
[2] |
SANG W C, LEE C, LEE J M, et al. Fault detection and identification of nonlinear processes based on kernel PCA[J]. Chemometrics & Intelligent Laboratory Systems, 2005, 75(1):55-67.
|
[3] |
RUSSELL E L, CHIANG L H, BRAATZ R D. Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis[J]. Chemometrics & Intelligent Laboratory Systems, 2000, 51(1):81-93.
|
[4] |
AJAMI A, DANESHVAR M. Data driven approach for fault detection and diagnosis of turbine in thermal power plant using independent component analysis (ICA)[J]. International Journal of Electrical Power & Energy Systems, 2012, 43(1):728-735.
|
[5] |
任浩, 屈剑锋, 柴毅, 等. 深度学习在故障诊断领域中的研究现状与挑战[J]. 控制与决策, 2017, 32(8):1345-1358. REN H, QU J F, CHAI Y, et al. Deep learning for fault diagnosis:the state of the art and challenge[J]. Control & Decision, 2017, 32(8):1345-1358.
|
[6] |
TAMILSELVAN P, WANG P. Failure diagnosis using deep belief learning based health state classification[J]. Reliability Engineering & System Safety, 2013, 115(7):124-135.
|
[7] |
CHEN Z Q, LI C, SANCHEZ R V. Gearbox fault identification and classification with convolutional neural networks[J]. Shock and Vibration, 2015, 2015(2):1-10.
|
[8] |
JANSSENS O, SLAVKOVIKJ V, VERVISCH B, et al. Convolutional neural network based fault detection for rotating machinery[J]. Journal of Sound & Vibration, 2016, 377(1):331-345.
|
[9] |
CHAN T H, JIA K, GAO S, et al. PCANet:a simple deep learning baseline for image classification?[J]. IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society, 2015, 24(12):5017-5031.
|
[10] |
LIONG V E, LU J, WANG G. Face recognition using deep PCA[C]//Information, Communications and Signal Processing (ICICS) 20139th International Conference on IEEE. 2013:1-5.
|
[11] |
WEN Q, GE Z, SONG Z. Data-based linear Gaussian state-space model for dynamic process monitoring[J]. AIChE Journal, 2012, 58(12):3763-3776.
|
[12] |
ZHOU L, LI G, SONG Z, et al. Autoregressive dynamic latent variable models for process monitoring[J]. IEEE Transactions on Control Systems Technology, 2017, 25(1):366-373.
|
[13] |
LI X, DUAN F, SATTAR T, et al. Canonical variable analysis for fault detection, system identification and performance estimation[C]//International Conference Design and Modeling of Mechanical Systems. Springer, Cham, 2017:247-257.
|
[14] |
SAMUEL R T, CAO Y. Kernel canonical variate analysis for nonlinear dynamic process monitoring[J]. IFAC-PapersOnLine, 2015, 48(8):605-610.
|
[15] |
SHANG J, CHEN M, JI H, et al. Recursive transformed component statistical analysis for incipient fault detection[J]. Automatica, 2017, 80(1):313-327.
|
[16] |
YIN S, DING S X, HAGHANI A, et al. A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process[J]. Journal of Process Control, 2012, 22(9):1567-1581.
|
[17] |
YIN S, DING S X, XIE X, et al. A review on basic data-driven approaches for industrial process monitoring[J]. IEEE Transactions on Industrial Electronics, 2014, 61(11):6418-6428.
|
[18] |
GE Z. Multivariate Statistical Process Control:Process Monitoring Methods and Applications[M]. SONG Z. New York:Springer Science & Business Media, 2012:18-20
|
[19] |
BAKDI A, KOUADRI A. A new adaptive PCA based thresholding scheme for fault detection in complex systems[J]. Chemometrics & Intelligent Laboratory Systems, 2017, 162(1):83-93.
|
[20] |
童楚东, 蓝艇, 史旭华. 基于互信息的分散式动态PCA故障检测方法[J]. 化工学报, 2016, 67(10):4317-4323. TONG C D, LAN T, SHI X H. Fault detection by decentralized dynamic PCA algorithm on mutual information[J]. CIESC Journal, 2016, 67(10):4317-4323.
|
[21] |
江伟, 王振雷, 王昕. 基于混合分块DMICA-PCA的全流程过程监控方法[J]. 化工学报, 2017, 68(2):759-766. JIANG W, WANG Z L, WANG X. Plant-wide process monitoring based on mixed multiblock DMICA-PCA[J]. CIESC Journal, 2017, 68(2):759-766.
|
[22] |
张妮, 田学民, 蔡连芳. 基于RISOMAP的非线性过程故障检测方法[J]. 化工学报, 2013, 64(6):2125-2130. ZHANG N, TIAN X M, CAI L F. Non-linear process fault detection method based on RISOMAP[J]. CIESC Journal, 2013, 64(6):2125-2130.
|
[23] |
AYECH N, CHAKOUR C, HARKAT M F. New adaptive moving window PCA for process monitoring[J]. IFAC Proceedings Volumes, 2012, 45(20):606-611.
|
[24] |
CHIANG L H. Fault Detection and Diagnosis in Industrial Systems[M]. RUSSELL E L, BRAATZ R D. London:Springer, 2001:103-109.
|
[25] |
RUSSELL E L. Data-driven Methods for Fault Detection and Diagnosis in Chemical Processes[M]. CHIANG L H, BRAATZ R D. New York:Springer Science & Business Media, 2012:84-90
|
[26] |
DING S X. Data-driven Design of Fault Diagnosis and Fault-tolerant Control Systems[M]. London:Springer, 2014:23-30.
|
[27] |
CHEN Z. Data-driven Fault Detection for Industrial Processes[M]. Duisburg:Springer Fachmedien Wiesbaden, 2017:31-33.
|
[28] |
薄翠梅, 韩晓春, 易辉, 等. 基于聚类选择k近邻的LLE算法及故障检测[J]. 化工学报, 2016, 67(3):925-930. BO C M, HAN X C, YI H, et al. Neighborhood selection of LLE based on cluster for fault detection[J]. CIESC Journal, 2016, 67(3):925-930.
|
[29] |
ZHANG Y. Fault detection and diagnosis of processes using nonlinear improved kernel independent component analysis (KICA) and support vector machine (SVM)[J]. Industrial & Engineering Chemistry Research, 2008, 47(18):6961-6971.
|
[30] |
BERNAL-DE-LÁZARO J M, LLANES-SANTIAGO O, PRIETO-MORENO A, et al. Enhanced dynamic approach to improve the detection of small-magnitude faults[J]. Chemical Engineering Science, 2016, 146(1):166-179.
|