化工学报 ›› 2019, Vol. 70 ›› Issue (10): 3722-3737.DOI: 10.11949/0438-1157.20190751
潘鑫1,2(),王旭珍1,2(),冯锟2,王爽2,赵宗彬1,2,邱介山1,2,3()
收稿日期:
2019-07-02
修回日期:
2019-08-21
出版日期:
2019-10-05
发布日期:
2019-10-05
通讯作者:
王旭珍,邱介山
作者简介:
潘鑫(1994—),男,硕士研究生,基金资助:
Xin PAN1,2(),Xuzhen WANG1,2(),Kun FENG2,Shuang WANG2,Zongbin ZHAO1,2,Jieshan QIU1,2,3()
Received:
2019-07-02
Revised:
2019-08-21
Online:
2019-10-05
Published:
2019-10-05
Contact:
Xuzhen WANG,Jieshan QIU
摘要:
碳材料是一类神奇的材料,碳原子可以通过sp、sp2或sp3杂化构筑不同微观结构的碳材料。目前,已经发现的碳的同素异形体有石墨、金刚石、富勒烯、碳纳米管、碳纳米环、石墨烯和石墨炔。富勒烯和石墨烯因性质独特、应用前景广阔,其发现者分别获得1996年和2010年诺贝尔奖。碳纳米环具有独特的环状结构、优异的机械强度及特殊的物理化学性能,也引起广泛关注。研究者从早期对碳纳米环进行理论计算、预测其性质,到现在已能够通过化学气相沉积、激光辐射、超声诱导自组装等方法制备不同尺寸的碳纳米环,并对其性质和应用进行探索。总结了近30年来有关碳纳米环的生长机理、可控合成、性质和应用等方面的研究进展,对其规模化合成与应用提出了建议与展望。
中图分类号:
潘鑫, 王旭珍, 冯锟, 王爽, 赵宗彬, 邱介山. 碳纳米环:生长机理、可控合成、性质和应用[J]. 化工学报, 2019, 70(10): 3722-3737.
Xin PAN, Xuzhen WANG, Kun FENG, Shuang WANG, Zongbin ZHAO, Jieshan QIU. Carbon nanorings: growth mechanism, controllable synthesis, properties and applications[J]. CIESC Journal, 2019, 70(10): 3722-3737.
1 | ZhangJ, TerronesM, ParkC R, et al. Carbon science in 2016: status, challenges and perspectives[J]. Carbon, 2016, 98: 708-732. |
2 | LiQ, YongL, YangC, et al. Synthesis of γ-graphyne by mechanochemistry and its electronic structure[J]. Carbon, 2018, 136, 248-254. |
3 | NovoselovK S, GeimA K, MorozovS V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. |
4 | GeimA K, NovoselovK S. The rise of graphene[J]. Nat. Mater., 2007, 6(3): 183-191. |
5 | GuoX L, YuL L, HuiB L, et al. Architecture of graphdiyne nanoscale films[J]. Chem. Commun., 2010, 46(19): 3256-3258. |
6 | LiuJ, DaiH, HafnerJ H, et al. Fullerene ‘crop circles’[J]. Nature, 1997, 385(6619): 780-781. |
7 | KongX Y, DingY, YangR, et al. Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts[J]. Science, 2004, 303(5662): 1348-1351. |
8 | ZhongK, LiJ, LiuL, et al. Direct fabrication of monodisperse silica nanorings from hollow spheres — a template for core-shell nanorings[J]. ACS Appl. Mater. Interfaces, 2016, 8(16): 10451-10458. |
9 | SunF Q, YuJ C, WangX C. Construction of size-controllable hierarchical nanoporous TiO2 ring arrays and their modifications[J]. Chem. Mat., 2006, 18(16): 3774-3779. |
10 | BayatiM, PatokaP, GiersigM, et al. An approach to fabrication of metal nanoring arrays[J]. Langmuir, 2010, 26(5): 3549-3554. |
11 | YabuH. Bottom-up approach to creating three-dimensional nanoring arrays composed of Au nanoparticles[J]. Langmuir, 2013, 29(4): 1005-1009. |
12 | ChenJ, LiaoW S, ChenX, et al. Evaporation-induced assembly of quantum dots into nanorings[J]. ACS Nano, 2009, 3(1): 173-180. |
13 | MazzantiM. The secret is in the ring[J]. Nat. Chem., 2018, 10:247. |
14 | WilderJ W G, VenemaL C, RinzlerA G, et al. Electronic structure of atomically resolved carbon nanotubes[J]. Nature, 1998, 391(6662): 59-62. |
15 | LynM E, HeJ, KoplitzB. Laser-induced production of large carbon-based toroids[J]. Appl. Surf. Sci., 2005, 246(1): 44-47. |
16 | ColomerJ F, HenrardL, FlahautE, et al. Rings of double-walled carbon nanotube bundles[J]. Nano Lett., 2003, 3(5): 685-689. |
17 | AhlskogM, SeynaeveE, VullersR J M, et al. Ring formations from catalytically synthesized carbon nanotubes[J]. Chem. Phys. Lett., 1999, 300(1/2): 202-206. |
18 | SongL, CiL J, SunL F, et al. Large-scale synthesis of rings of bundled single-walled carbon nanotubes by floating chemical vapor deposition[J]. Adv. Mater., 2006, 18(14): 1817-1821. |
19 | ZhouZ, WanD, BaiY, et al. Ring formation from the direct floating catalytic chemical vapor deposition[J]. Physica E, 2006, 33(1): 24-27. |
20 | 刘壮, 汪伟, 巨晓洁, 等. 具有限域传质效应的碳基分离膜——从碳纳米管膜到石墨烯膜[J]. 化工学报, 2018, 69(1): 166-174. |
LiuZ, WangW, JuX J, et al. Carbon-based membranes with confinement effect for mass transport: from carbon nano-tube membranes to graphene membranes[J]. CIESC Journal, 2018, 69(1): 166-174. | |
21 | MartelR, SheaH R, AvourisP. Ring formation in single-wall carbon nanotubes[J]. J. Phys. Chem. B, 1999, 103(36): 7551-7556. |
22 | MartelR, SheaH R, AvourisP. Rings of single-walled carbon nanotubes[J]. Nature, 1999, 398(6725): 299. |
23 | KomatsuN, ShimawakiT, AonumaS, et al. Ultrasonic isolation of toroidal aggregates of single-walled carbon nanotubes[J]. Carbon, 2006, 44(10): 2091-2093. |
24 | WangX, WangZ, LiuY Q, et al. Ring formation and fracture of a carbon nanotube[J]. Chem. Phys. Lett., 2001, 339(1): 36-40. |
25 | SanoM, KaminoA, OkamuraJ, et al. Ring closure of carbon nanotubes[J]. Science, 2001, 293(5533): 1299-1301. |
26 | VossmeyerT, ChungS W, GelbartW M, et al. Surprising superstructures: rings[J]. Adv. Mater., 1998, 10(4): 351-353. |
27 | GengJ, KoY K, YounS C, et al. Synthesis of SWNT rings by noncovalent hybridization of porphyrins and single-walled carbon nanotubes[J]. J. Phys. Chem. B, 2008, 112(32): 12264-12271. |
28 | ZouS, MaspochD, WangY, et al. Rings of single-walled carbon nanotubes: molecular-template directed assembly and monte carlo modeling[J]. Nano Lett., 2007, 7(2): 276-280. |
29 | MotavasS, OmraneB, PapadopoulosC. Large-area patterning of carbon nanotube ring arrays[J]. Langmuir, 2009, 25(8): 4655-4658. |
30 | WangW, LairdE D, GogotsiY, et al. Bending single-walled carbon nanotubes into nanorings using a Pickering emulsion-based process[J]. Carbon, 2012, 50(5): 1769-1775. |
31 | SongJ, WangF, YangX, et al. Gold nanoparticle coated carbon nanotube ring with enhanced raman scattering and photothermal conversion property for theranostic applications[J]. J. Am. Chem. Soc., 2016, 138(22): 7005-7015. |
32 | KosynkinD V, HigginbothamA L, SinitskiiA, et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons[J]. Nature, 2009, 458(7240): 872-876. |
33 | LiuY, WangX, DongY, et al. Self-assembled sulfur/reduced graphene oxide nanoribbon paper as a free-standing electrode for high performance lithium-sulfur batteries[J]. Chem. Commun., 2016, 52(87): 12825-12828. |
34 | LiuY, WangX, SongX, et al. Interlayer expanded MoS2 enabled by edge effect of graphene nanoribbons for high performance lithium and sodium ion batteries[J]. Carbon, 2016, 109:461-471. |
35 | LiuY, WangX, WanW, et al. Multifunctional nitrogen-doped graphene nanoribbon aerogels for superior lithium storage and cell culture[J]. Nanoscale, 2016, 8(4): 2159-2167. |
36 | LiuY, YangY, WangX, et al. Flexible paper-like free-standing electrodes by anchoring ultrafine SnS2 nanocrystals on graphene nanoribbons for high-performance sodium ion batteries[J]. ACS Appl. Mater. Interfaces, 2017, 9(18): 15484-15491. |
37 | LiuY, WangX, DongY, et al. Nitrogen-doped graphene nanoribbons for high-performance lithium ion batteries[J]. J. Mater. Chem. A, 2014, 2(40): 16832-16835. |
38 | YangL, WangX, LiuY, et al. Layer-dependent catalysis of MoS2/graphene nanoribbon composites for efficient hydrodesulfurization[J]. Catal. Sci. Technol., 2017, 7(3): 693-702. |
39 | RauwaldU, ShaverJ, KlostermanD A, et al. Electron-induced cutting of single-walled carbon nanotubes[J]. Carbon, 2009, 47(1): 178-185. |
40 | ShubaM V, PaddubskayaA G, KuzhirP P, et al. Soft cutting of single-wall carbon nanotubes by low temperature ultrasonication in a mixture of sulfuric and nitric acids[J]. Nanotechnology, 2012, 23(49): 495714. |
41 | ZieglerK J, ZhenningG, HaiqingP, et al. Controlled oxidative cutting of single-walled carbon nanotubes[J]. J. Am. Chem. Soc., 2005, 127(5): 1541-1547. |
42 | TranM Q, TridechC, AlfreyA, et al. Thermal oxidative cutting of multi-walled carbon nanotubes[J]. Carbon, 2007, 45(12): 2341-2350. |
43 | KrauseB, VillmowT, BoldtR, et al. Influence of dry grinding in a ball mill on the length of multiwalled carbon nanotubes and their dispersion and percolation behaviour in melt mixed polycarbonate composites[J]. Compos. Sci. Technol., 2011, 71(8): 1145-1153. |
44 | RenF, KanaanS A, KhalkhalF, et al. Controlled cutting of single-walled carbon nanotubes and low temperature annealing[J]. Carbon, 2013, 63: 61-70. |
45 | WangX X, WangJ N. Preparation of short and water-dispersible carbon nanotubes by solid-state cutting[J]. Carbon, 2008, 46(1): 117-125. |
46 | 张文忠, 蔡晓兰, 周蕾, 等. 碳纳米管短切技术的研究进展[J]. 机械工程材料, 2014, 38(9): 6-11. |
ZhangW Z, CaiX L, ZhouL, et al. Research progress on carbon nanotubes cutting technologies[J]. Materials for Mechanical Engineering, 2014, 38(9): 6-11. | |
47 | 陈永, 刘畅, 成会明. 多壁纳米碳管的超声短切处理[J]. 炭素技术, 2007, 26(5): 20-23. |
ChenY, LiuC, ChengH M. Shortening of multi-walled carbon nanotubes by ultrasonication[J]. Carbon Techniques, 2007, 26(5): 20-23. | |
48 | WeydemeyerE J, SawdonA J, PengC A. Controlled cutting and hydroxyl functionalization of carbon nanotubes through autoclaving and sonication in hydrogen peroxide[J]. Chem. Commun., 2015, 51(27): 5939-5942. |
49 | SunJ, LiuH, ChenX, et al. Carbon nanorings and their enhanced lithium storage properties[J]. Adv. Mater., 2013, 25(8): 1125-1130, 1124. |
50 | LewisS E. Cycloparaphenylenes and related nanohoops[J]. Chem. Soc. Rev., 2015, 44(8): 2221-2304. |
51 | 周启峰, 江波, 杨海波. 可作为碳纳米管片段的共轭芳烃大环的设计合成[J]. 化学进展, 2018, (5): 628-638. |
ZhouQ F, JiangB, YangH B. Design and synthesis of conjugated aromatic macrocyclic rings that can serve as carbon nanotube segments[J]. Progress in Chemistry, 2018, (5): 628-638. | |
52 | SegawaY, YagiA, MatsuiK, et al. Design and synthesis of carbon nanotube segments[J]. Angew. Chem.-Int. Edit., 2016,55(17): 5136-5158. |
53 | JastiR, BhattacharjeeJ, NeatonJ B, et al. Synthesis, characterization, and theory of [9]-,[12]-, and [18]cycloparaphenylene: carbon nanohoop structures[J]. J. Am. Chem. Soc., 2008, 130(52): 17646-17647. |
54 | TakabaH, OmachiH, YamamotoY, et al. Selective synthesis of [12]cycloparaphenylene[J]. Angew. Chem.-Int. Edit., 2009, 48(33): 6112-6116. |
55 | YamagoS, WatanabeY, IwamotoT. Synthesis of [8]cycloparaphenylene from a square-shaped tetranuclear platinum complex[J]. Angew. Chem.-Int. Edit., 2010, 49(4): 757-759. |
56 | HuangZ A, ChenC, YangX D, et al. Synthesis of oligoparaphenylene-derived nanohoops employing an anthracene photodimerization-cycloreversion Strategy[J]. J. Am. Chem. Soc., 2016, 138(35): 11144-11147. |
57 | LuD, ZhuangG, WuH, et al. A large π-extended carbon nanoring based on nanographene units: bottom-up synthesis, photophysical properties, and selective complexation with fullerene C70[J]. Angew. Chem.-Int. Edit., 2017, 56(1): 158-162. |
58 | HuangQ, ZhuangG, JiaH, et al. Photoconductive curved-nanographene/fullerene supramolecular heterojunctions[J]. Angew. Chem.-Int. Edit., 2019, 58(19): 6244-6249. |
59 | LuD, WuH, DaiY, et al. A cycloparaphenylene nanoring with graphenic hexabenzocoronene sidewalls[J]. Chem. Commun., 2016, 52(44): 7164-7167. |
60 | GuoL, YangX, CongH. Synthesis of macrocyclic oligoparaphenylenes derived from anthracene photodimer[J]. Chin. J. Chem., 2018, 36(12): 1135-1138. |
61 | XuW, YangX D, FanX B, et al. Synthesis and characterization of a pentiptycene-derived dual oligoparaphenylene nanohoop[J]. Angew. Chem.-Int. Edit., 2019, 58(12): 3943-3947. |
62 | SegawaY, KuwayamaM, HijikataY, et al. Topological molecular nanocarbons: all-benzene catenane and trefoil knot[J]. Science, 2019, 365(6450): 272-276 |
63 | PovieG, SegawaY, NishiharaT, et al. Synthesis of a carbon nanobelt[J]. Science, 2017, 356(6334): 172-175. |
64 | CheungK Y, GuiS, DengC, et al. Synthesis of armchair and chiral carbon nanobelts[J]. Chem, 2019, 5(4): 838-847. |
65 | MatsuiK, SegawaY, ItamiK. All-benzene carbon nanocages: size-selective synthesis, photophysical properties, and crystal structure[J]. J. Am. Chem. Soc., 2014, 136(46): 16452-16458. |
66 | KayaharaE, IwamotoT, TakayaH, et al. Synthesis and physical properties of a ball-like three-dimensional pi-conjugated molecule[J]. Nat. Commun., 2013, 4:2694. |
67 | CuiS, ZhuangG, LuD, et al. A three-dimensional capsule-like carbon nanocage as a segment model of capped zigzag[12,0] carbon nanotubes: synthesis, characterization, and complexation with C70[J]. Angew. Chem.-Int. Edit., 2018, 57(30): 9330-9335. |
68 | LiuL, LiuF, ZhaoJ. Curved carbon nanotubes: from unique geometries to novel properties and peculiar applications[J]. Nano Res., 2014, 7(5): 626-657. |
69 | IharaS, ItohS, KitakamiJ I. Toroidal forms of graphitic carbon[J]. Phys. Rev. B, 1993, 47(19): 12908-12911. |
70 | ItohS, IharaS. Toroidal forms of graphitic carbon(Ⅱ): Elongated tori[J]. Phys. Rev. B, 1993, 48(11): 8323-8328. |
71 | ItohS, IharaS. Isomers of the toroidal forms of graphitic carbon[J]. Phys. Rev. B, 1994, 49(19): 13970-13974. |
72 | ChenW, LiH. How does carbon nanoring deform to spiral induced by carbon nanotube?[J]. Sci Rep, 2014, 4:3865. |
73 | ChenN, LuskM T, Van DuinA C T, et al. Mechanical properties of connected carbon nanorings via molecular dynamics simulation[J]. Phys. Rev. B, 2005, 72(8): 085416. |
74 | SmithB W, LuzziD E. Formation mechanism of fullerene peapods and coaxial tubes: a path to large scale synthesis[J]. Chem. Phys. Lett., 2000, 321(1): 169-174. |
75 | YuK L, ZouJ J, BenY H, et al. Synthesis of NiO-embedded carbon nanotubes using corona discharge enhanced chemical vapor deposition[J]. Diam. Relat. Mat., 2006, 15(9): 1217-1222. |
76 | WangZ, ZhaoZ, QiuJ. Carbon nanotube templated synthesis of CeF3 nanowires[J]. Chem. Mat., 2007, 19(14): 3364-3366. |
77 | HaddonR C. Electronic properties of carbon toroids[J]. Nature, 1997, 388(6637): 31-32. |
78 | LiuL Z, ZhangL, GaoH L, et al. Structure, energetics, and heteroatom doping of armchair carbon nanotori[J]. Carbon, 2011, 49(13): 4518-4523. |
79 | LatilS, RocheS, RubioA. Persistent currents in carbon nanotube based rings[J]. Phys. Rev. B, 2003, 67(16): 165420. |
80 | ChenH B, XuN, DingJ W. Effects of inter-wall interaction and outer-wall disorder on persistent current in a carbon nanotorus[J]. Solid State Commun., 2008, 146(1/2): 12-16. |
81 | ChenH B, DingJ W. Persistent current in finite-width ring with surface disorder[J]. Physica B: Condensed Matter, 2008, 403(12): 2015-2020. |
[1] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[2] | 陈雅鑫, 袁航, 刘冠章, 毛磊, 杨纯, 张瑞芳, 张光亚. 蛋白质纳米笼介导的酶自固定化研究进展[J]. 化工学报, 2023, 74(7): 2773-2782. |
[3] | 侯旺君, 闫翎鹏, 曹哲勇, 郑静霞, 杨永珍. 煤基零维纳米碳材料的合成、性能及其在能源转换和存储应用中的研究进展[J]. 化工学报, 2022, 73(11): 4791-4813. |
[4] | 向茂乔, 耿玉琦, 朱庆山. 氮化硅粉体制备技术及粉体质量研究进展[J]. 化工学报, 2022, 73(1): 73-84. |
[5] | 从少领, 赵捷, 杨玉飞, 吴长清, 贺凡, 袁华, 汪晓芹, 熊善新, 吴燕, 周安宁. 煤基聚苯胺制掺N碳微纳米管的实验研究[J]. 化工学报, 2021, 72(9): 4950-4960. |
[6] | 王欢, 符方宝, 李琼, 席跃宾, 杨东杰. 木质素碳纳米材料制备及在催化中的应用研究进展[J]. 化工学报, 2021, 72(9): 4445-4457. |
[7] | 李宇明, 刘梓烨, 张启扬, 王雅君, 崔国庆, 姜桂元, 贺德华. 氮掺杂碳材料的制备及其在催化领域中的应用[J]. 化工学报, 2021, 72(8): 3919-3932. |
[8] | 何鹏鹏, 赵颂, 毛晨岳, 王志, 王纪孝. 耐溶剂复合纳滤膜的研究进展[J]. 化工学报, 2021, 72(2): 727-747. |
[9] | 卞维柏, 潘建明. 电吸附技术及吸附电极材料研究进展[J]. 化工学报, 2021, 72(1): 304-319. |
[10] | 张红, 唐留. p型掺杂剂Cp2Mg在MOCVD气相中的反应机理研究[J]. 化工学报, 2020, 71(7): 3000-3008. |
[11] | 桑元, 向茂乔, 宋淼, 朱庆山. 流化床化学气相沉积法制备近化学计量比的TiN粉体[J]. 化工学报, 2020, 71(6): 2743-2751. |
[12] | 林羲栋, 唐友臣, 苏权飞, 刘绍鸿, 吴丁财. 层次孔碳材料:结构设计、功能改性及新能源器件应用[J]. 化工学报, 2020, 71(6): 2586-2598. |
[13] | 梁秋群, 刘峥, 艾慧婷, 刘欣欣, 张淑芬. 基于油茶果壳的C/ZnO复合材料制备及其在铅碳电池中的应用[J]. 化工学报, 2020, 71(5): 2292-2304. |
[14] | 孙明慧, 陈静圆, 肖南, 陈奥博, 王旭珍, 邱介山. 煤基富氮层级多孔碳制备及其催化脱硫性能[J]. 化工学报, 2020, 71(2): 660-668. |
[15] | 冷杰,罗晶晶,宋崇虎,周言,李章敏,陶端健. Co-N-C催化剂的制备及“一锅法”合成N-亚苄基苯胺[J]. 化工学报, 2020, 71(11): 5016-5024. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||