化工学报 ›› 2019, Vol. 70 ›› Issue (10): 3738-3747.DOI: 10.11949/0438-1157.20190573
蔡泉威1(),巨晓洁1,2,谢锐1,2,汪伟1,2,刘壮1,2,褚良银1,2()
收稿日期:
2019-05-27
修回日期:
2019-06-20
出版日期:
2019-10-05
发布日期:
2019-10-05
通讯作者:
褚良银
作者简介:
蔡泉威(1991—),男,博士研究生,基金资助:
Quanwei CAI1(),Xiaojie JU1,2,Rui XIE1,2,Wei WANG1,2,Zhuang LIU1,2,Liangyin CHU1,2()
Received:
2019-05-27
Revised:
2019-06-20
Online:
2019-10-05
Published:
2019-10-05
Contact:
Liangyin CHU
摘要:
异形功能性微颗粒由于具有独特的散射、流变和凝结等特性,被广泛应用于工业和临床医学等领域。微流控技术作为一种新兴的微流体操控技术,能够连续可控地制备尺寸均一、结构和功能多样化的微尺度材料。近年来,利用微流控技术制备异形功能微颗粒成为研究热点。主要综述了利用微流控技术制备多面体结构、棒条状、子弹形、多腔室结构、孔-壳形和螺旋形微颗粒功能材料的研究新进展,重点介绍了基于微流控通道的尺寸和形状的限制作用、基于微流控构建层流模板的可控光刻蚀、基于表面活性剂的种类或含量辅助诱导多重乳液反浸润过程和对利用微流控技术制备的单分散液滴进行二次操作制备异形微颗粒功能材料等方面的研究现状。
中图分类号:
蔡泉威, 巨晓洁, 谢锐, 汪伟, 刘壮, 褚良银. 微流控技术可控制备异形微颗粒功能材料的研究进展[J]. 化工学报, 2019, 70(10): 3738-3747.
Quanwei CAI, Xiaojie JU, Rui XIE, Wei WANG, Zhuang LIU, Liangyin CHU. Recent progress in controllable preparation of anisotropic microparticle functional materials based on microfluidics[J]. CIESC Journal, 2019, 70(10): 3738-3747.
图1 制备多面体结构微颗粒的微流控装置(a);多面体结构微颗粒的扫描电镜图(标尺为10 μm) (b) [26]
Fig.1 Schematic illustration of microfluidic device for fabricating microparticles with polyhedral structures (a),
图2 制备豆荚状微纤维的微流控装置(a);豆荚状纤维干燥和可控拉伸制备不同结构的棒条状微颗粒(b); 具有不同结构的棒条状微颗粒的光学图片(上部,标尺为1 mm)和扫描电镜图片(下部,标尺为200 μm) (c) [42]
Fig.2 Schematic illustration of microfluidic device for fabricating pod-like microfibers (a), manipulation of pod-like microfibers for preparing rod-like particles with different structures (b), optical images (upper, scale bar is 1 mm) and SEM images (bottom, scale bar is 200 μm) of rod-like microparticles fabricated from deformed rod-like droplets (c)[42]
图3 制备单分散子弹形微颗粒功能材料的微流控装置和液滴在不同通道中的受力分析,蓝色箭头表示液滴外相流体的正压力,红色箭头表示外相流体作用在液滴上的流体剪切应力(a); 当收集管中外相流体Reynolds数分别为0.003、0.010和0.016时,收集管中变形的子弹形液滴模板和微颗粒的光学图片(b); 随着收集管中外相流体的Reynolds数的增大,子弹形液滴模板和相应的子弹形微颗粒的变形系数变化情况(c) [45]
Fig.3 Schematic illustration of microfluidic device for preparation of monodisperse bullet-shaped microparticles, and analysis of stress on droplets in microchannel in different situations. Blue arrows represent positive pressure from oil fluid and red arrows represent fluid shear stress on droplets (a).
图4 表面活性剂辅助多腔室结构脂质体囊泡微颗粒的组装示意图(a);制备具有两种不同内核的双重复乳的示意图(b)和光学图片(c);双腔室结构囊泡微颗粒的共聚焦图片(d);具有多样化结构的囊泡微颗粒的共聚焦图片(e)[48]
Fig.4 Schematic illustration of surfactant-assisted assembly of multicompartment liposome vesicles microparticles (a). Schematic diagram (b) and snapshots (c) of fabrication of double emulsions with two distinct drops. Confocal images of vesicles microparticles with two different compartments (d). Confocal images of vesicle microparticles with multi structures (e) [48]
图6 制备磁性螺旋形纤维模板的微流控装置和生物硅化过程 (a);磁性海藻酸钙螺旋形微颗粒的光学图片(b);具有封闭(c)和开放(d)中空结构的螺旋形微颗粒及颗粒中铁元素的EDX分析(e);破碎后的中空结构的螺旋形微颗粒的全景图(f)和局部图(g)[73]
Fig.6 Schematic illustration of microfluidic fabrication of magnetic hybrid microfiber and biosilicification process to fabricate helical microparticles with hollow structures (a). Optical morphology of magnetic helical Ca-Alg microparticles (b). SEM image of a magnetic hybrid microparticle with hollow helical shape containing closed compartmental structure (c) and open tubular structure (d). EDX analysis showing surface distribution of Fe element of hybrid shell(e). SEM image of a broken magnetic hybrid microparticles (f) with magnified cross-sectional image showing hollow helical structure (g)[73]
1 | Nisisako T , Torii T . Formation of biphasic Janus droplets in a microfabricated channel for the synthesis of shape-controlled polymer microparticles[J]. Adv. Mater., 2007, 19(11): 1489-1493. |
2 | Barua S , Yoo J W , Kolhar P , et al . Particle shape enhances specificity of antibody-displaying nanoparticles[J]. Proc.Natl. Acad. Sci. U. S. A., 2013, 110(9): 3270-3275. |
3 | Gu L , Park J H , Duong K H , et al . Magnetic luminescent porous silicon microparticles for localized delivery of molecular drug payloads[J]. Small, 2010, 6(22): 2546-2552. |
4 | He F , Zhang M J , Wang W , et al . Designable polymeric microparticles from droplet microfluidics for controlled drug release[J]. Adv. Mater. Technol., 2019, 4(6): 1800687. |
5 | Chen J , Clay N , Kong H . Non-spherical particles for targeted drug delivery[J]. Chem. Eng. Sci., 2015, 125: 20-24. |
6 | Best J P , Yan Y , Caruso F . The role of particle geometry and mechanics in the biological domain[J]. Adv. Healthc. Mater., 2012, 1(1): 35-47. |
7 | Murray M J , Snowden M J . The preparation, characterisation and applications of colloidal microgels[J]. Adv. Colloid Interfac., 1995, 54: 73-91. |
8 | Chung H J , Park T G . Surface engineered and drug releasing pre-fabricated scaffolds for tissue engineering[J]. Adv. Drug. Deliv. Rev., 2007, 59(4/5): 249-262. |
9 | Eng G , Lee B W , Parsa H , et al . Assembly of complex cell microenvironments using geometrically docked hydrogel shapes[J]. Proc. Natl. Acad. Sci. U. S. A., 2013, 110(12): 4551-4556. |
10 | Glotzer S C , Solomon M J . Anisotropy of building blocks and their assembly into complex structures[J]. Nat. Mater., 2007, 6(8): 557-562. |
11 | Lu Y , Yin Y , Xia Y . Three-dimensional photonic crystals with non-spherical colloids as building blocks[J]. Adv. Mater., 2001, 13(6): 415-420. |
12 | Rolland J P , Maynor B W , Euliss L E , et al . Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials[J]. J.Am. Chem. Soc., 2005, 127(28): 10096-10100. |
13 | Pal R K , Kurland N E , Jiang C , et al . Fabrication of precise shape-defined particles of silk proteins using photolithography[J]. Euro. Polym. J., 2016, 85: 421-430. |
14 | Tavacoli J W , Bauër P , Fermigier M , et al . The fabrication and directed self-assembly of micron-sized superparamagnetic non-spherical particles[J]. Soft Matter, 2013, 9(38): 9103-9110. |
15 | Yin Y , Xia Y . Self-assembly of monodispersed spherical colloids into complex aggregates with well‐defined sizes, shapes, and structures[J]. Adv. Mater., 2001, 13(4): 267-271. |
16 | Tamaki K , Matsushita S , Shimomura M . Fabrication of polymeric particles composed of two-dimensionally self-assembled nanoparticles by use of a microporous film as a template[J]. Colloid Surface A, 2008, 313: 630-635. |
17 | Manoharan V N , Elsesser M T , Pine D J . Dense packing and symmetry in small clusters of microspheres[J]. Science, 2003, 301(5632): 483-487. |
18 | Lele P P , Furst E M . Assemble-and-stretch method for creating two- and three-dimensional structures of anisotropic particles[J]. Langmuir, 2009, 25(16): 8875-8878. |
19 | Champion J A , Katare Y K , Mitragotri S . Making polymeric micro-and nanoparticles of complex shapes[J]. Proc. Natl. Acad. Sci. U. S. A., 2007, 104(29): 11901-11904. |
20 | Cheng Y , Zhu C , Xie Z , et al . Anisotropic colloidal crystal particles from microfluidics[J]. J. Colloid Interf. Sci., 2014, 421: 64-70. |
21 | Zhang C , Yu X , You S , et al . Ultraviolet-assisted microfluidic generation of ferroelectric composite particles[J]. Biomicrofluidics, 2016, 10(2): 024106. |
22 | Zhao Y , Xie Z , Gu H , et al . Multifunctional photonic crystal barcodes from microfluidics[J]. NPG Asia Mater., 2012, 4(9): e25. |
23 | Dou Y , Wang B , Jin M , et al . A review on self-assembly in microfluidic devices[J]. J. Micromech. Microeng., 2017, 27(11): 113002. |
24 | Shang L , Cheng Y , Zhao Y . Emerging droplet microfluidics[J]. Chem. Rev., 2017, 117(12): 7964-8040. |
25 | Utada A S , Chu L Y , Fernandez N A , et al . Dripping, jetting, drops, and wetting: the magic of microfluidics[J]. MRS Bull., 2011, 32(9): 702-708. |
26 | Dendukuri D , Pregibon D C , Collins J , et al . Continuous-flow lithography for high-throughput microparticle synthesis[J]. Nat. Mater., 2006, 5(5): 365-369. |
27 | Kim H U , Choi D G , Roh Y H , et al . Microfluidic synthesis of pH-sensitive multicompartmental microparticles for multimodulated drug release[J]. Small, 2016, 12(25): 3463-3470. |
28 | Hwang D K , Oakey J , Toner M , et al . Stop-flow lithography for the production of shape-evolving degradable microgel particles[J]. J.Am. Chem. Soc., 2009, 131(12): 4499-4504. |
29 | Suh S K , Yuet K , Hwang D K , et al . Synthesis of nonspherical superparamagnetic particles: in situ coprecipitation of magnetic nanoparticles in microgels prepared by stop-flow lithography[J]. J.Am. Chem. Soc., 2012, 134(17): 7337-7343. |
30 | Dendukuri D , Gu S S , Pregibon D C , et al . Stop-flow lithography in a microfluidic device[J]. Lab Chip, 2007, 7(7): 818-828. |
31 | Gratton S E , Ropp P A , Pohlhaus P D , et al . The effect of particle design on cellular internalization pathways[J]. Proc.Natl. Acad. Sci. U. S. A., 2008, 105(33): 11613-11618. |
32 | Panda P , Yuet K P , Hatton T A , et al . Tuning curvature in flow lithography: a new class of concave/convex particles[J]. Langmuir, 2009, 25(10): 5986-5992. |
33 | Dendukuri D , Panda P , Haghgooie R , et al . Modeling of oxygen-inhibited free radical photopolymerization in a PDMS microfluidic device[J]. Macromolecules, 2008, 41(22): 8547-8556. |
34 | Jang J H , Dendukuri D , Hatton T A , et al . A route to three-dimensional structures in a microfluidic device: stop‐flow interference lithography[J]. Angew. Chem. Int. Ed., 2007, 46(47): 9027-9031. |
35 | Fan J , Kim S H , Chen Z , et al . Creation of faceted polyhedral microgels from compressed emulsions[J]. Small, 2017, 13(31): 1701256. |
36 | Xu S , Nie Z , Seo M , et al . Generation of monodisperse particles by using microfluidics: control over size, shape, and composition[J]. Angew. Chem. Int. Ed., 2005, 44(5): 724-728. |
37 | Seo M , Nie Z , Xu S , et al . Continuous microfluidic reactors for polymer particles[J]. Langmuir, 2005, 21(25): 11614-11622. |
38 | Guerzoni L P B , Rose J C , Gehlen D B , et al . Cell encapsulation in soft, anisometric poly(ethylene) glycol microgels using a novel radical‐free microfluidic system[J]. Small, 2019, 15(20): 1900692. |
39 | Sim J Y , Lee G H , Kim S H . Microfluidic design of magnetoresponsive photonic microcylinders with multicompartments[J]. Small, 2015, 11(37): 4938-4945. |
40 | Shepherd R F , Conrad J C , Rhodes S K , et al . Microfluidic assembly of homogeneous and janus colloid-filled hydrogel granules[J]. Langmuir, 2006, 22(21): 8618-8622. |
41 | Dendukuri D , Tsoi K , Hatton T A , et al . Controlled synthesis of nonspherical microparticles using microfluidics[J]. Langmuir, 2005, 21(6): 2113-2116. |
42 | Wang W , He X H , Zhang M J , et al . Controllable microfluidic fabrication of microstructured materials from nonspherical particles to helices[J]. Macromol. Rapid Commun., 2017, 38(23): 1700429. |
43 | Hakimi N , Tsai S S , Cheng C H , et al . One-step two-dimensional microfluidics-based synthesis of three-dimensional particles[J]. Adv. Mater., 2014, 26(9): 1393-1398. |
44 | Choi K , Salehizadeh M , Da Silva R B , et al . 3D shape evolution of microparticles and 3D enabled applications using non-uniform UV flow lithography(NUFL)[J]. Soft Matter, 2017, 13(40): 7255-7263. |
45 | Cai Q W , Ju X J , Chen C , et al . Fabrication and flow characteristics of monodisperse bullet-shaped microparticles with controllable structures[J]. Chem. Eng. J., 2019, 370: 925-937. |
46 | Min N G , Choi T M , Kim S H . Bicolored Janus microparticles created by phase separation in emulsion drops[J]. Macromol. Chem. Phys., 2017, 218(2): 1600265. |
47 | Kang Z , Kong T , Lei L , et al . Engineering particle morphology with microfluidic droplets[J]. J. Micromech. Microeng., 2016, 26(7): 075011. |
48 | Deng N N , Yelleswarapu M , Huck W T . Monodisperse uni- and multicompartment liposomes[J]. J.Am. Chem. Soc., 2016, 138(24): 7584-7591. |
49 | Min N G , Ku M , Yang J , et al . Microfluidic production of uniform microcarriers with multicompartments through phase separation in emulsion drops[J]. Chem. Mater., 2016, 28(5): 1430-1438. |
50 | Shum H C , Zhao Y , Kim S H , et al . Multicompartment polymersomes from double emulsions[J]. Angew. Chem. Int. Ed., 2011, 50(7): 1648-1651. |
51 | Yin S N , Yang S , Wang C F , et al . Magnetic-directed assembly from Janus building blocks to multiplex molecular-analogue photonic crystal structures[J]. J.Am. Chem. Soc., 2016, 138(2): 566-573. |
52 | Prasad N , Perumal J , Choi C H , et al . Generation of monodisperse inorganic-organic Janus microspheres in a microfluidic device[J]. Adv. Funct. Mater., 2009, 19(10): 1656-1662. |
53 | Chen C H , Shah R K , Abate A R , et al . Janus particles templated from double emulsion droplets generated using microfluidics[J]. Langmuir, 2009, 25(8): 4320-4323. |
54 | Wang W , Zhang M J , Xie R , et al . Hole-shell microparticles from controllably evolved double emulsions[J]. Angew. Chem. Int. Ed., 2013, 52(31): 8084-8087. |
55 | Zhang M J , Wang W , Yang X L , et al . Uniform microparticles with controllable highly interconnected hierarchical porous structures[J]. ACS Appl. Mater. Inter., 2015, 7(25): 13758-13767. |
56 | Liu Q , Zhao M , Mytnyk S , et al . Self-orienting hydrogel micro-buckets as novel cell carriers[J]. Angew. Chem. Int. Ed., 2019, 58(2): 547-551. |
57 | Wang J , Shang L , Cheng Y , et al . Microfluidic generation of porous particles encapsulating spongy graphene for oil absorption[J]. Small, 2015, 11(32): 3890-3895. |
58 | Zhao X , Liu Y , Yu Y , et al . Hierarchically porous composite microparticles from microfluidics for controllable drug delivery[J]. Nanoscale, 2018, 10(26): 12595-12604. |
59 | Su Y Y , Zhang M J , Wang W , et al . Bubble-propelled hierarchical porous micromotors from evolved double emulsions[J]. Ind. Eng. Chem. Res., 2019, 58(4): 1590-1600. |
60 | Lee D , Weitz D A . Nonspherical colloidosomes with multiple compartments from double emulsions[J]. Small, 2009, 5(17): 1932-1935. |
61 | Zou M , Wang J , Yu Y , et al . Composite multifunctional micromotors from droplet microfluidics[J]. ACS Appl. Mater. Inter., 2018, 10(40): 34618-34624. |
62 | Zhao X , Liu Y , Yu Y , et al . Hierarchically porous composite microparticles from microfluidics for controllable drug delivery[J]. Nanoscale, 2018, 10(26): 12595-12604. |
63 | Wang J , Shang L , Cheng Y , et al . Microfluidic generation of porous particles encapsulating spongy graphene for oil absorption[J]. Small, 2015, 11(32): 3890-3895. |
64 | Wang J , Cheng Y , Yu Y , et al . Microfluidic generation of porous microcarriers for three-dimensional cell culture[J]. ACS Appl. Mater. Inter., 2015, 7(49): 27035-27039. |
65 | Sun L , Wang J , Yu Y , et al . Graphene oxide hydrogel particles from microfluidics for oil decontamination[J]. J. Colloid Interf. Sci., 2018, 528: 372-378. |
66 | Nisisako T , Hatsuzawa T . A microfluidic cross-flowing emulsion generator for producing biphasic droplets and anisotropically shaped polymer particles[J]. Microfluid. Nanofluid., 2010, 9(2/3): 427-437. |
67 | Peyer K E , Tottori S , Qiu F , et al . Magnetic helical micromachines[J]. Chem. Eur. J., 2013, 19(1): 28-38. |
68 | Wang X , Chen X Z , Alcântara C C J , et al . MOFBOTS: metal-organic-framework-based biomedical microrobots[J]. Adv. Mater., 2019: 1901592. |
69 | Tottori S , Zhang L , Qiu F , et al . Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport[J]. Adv. Mater., 2012, 24(6): 811-816. |
70 | Yu Y , Fu F , Shang L , et al . Bioinspired helical microfibers from microfluidics[J]. Adv. Mater., 2017, 29(18): 1605765. |
71 | Ribe N M , Habibi M , Bonn D . Liquid rope coiling[J]. Annu. Rev. Fluid Mech., 2012, 44(1): 249-266. |
72 | Yu Y , Shang L , Gao W , et al . Microfluidic lithography of bioinspired helical micromotors[J]. Angew. Chem. Int. Ed., 2017, 56(40): 12127-12131. |
73 | Tang M J , Wang W , Li Z L , et al . Controllable microfluidic fabrication of magnetic hybrid microswimmers with hollow helical structures[J]. Ind. Eng. Chem. Res., 2018, 57(29): 9430-9438. |
[1] | 苏伟, 马东旭, 金旭, 刘忠彦, 张小松. 表面润湿性对霜层传递特性影响可视化实验研究[J]. 化工学报, 2023, 74(S1): 122-131. |
[2] | 车睿敏, 郑文秋, 王小宇, 李鑫, 许凤. 基于离子液体的纤维素均相加工研究进展[J]. 化工学报, 2023, 74(9): 3615-3627. |
[3] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[4] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[5] | 何宣志, 何永清, 闻桂叶, 焦凤. 磁液液滴颈部自相似破裂行为[J]. 化工学报, 2023, 74(7): 2889-2897. |
[6] | 周必茂, 许世森, 王肖肖, 刘刚, 李小宇, 任永强, 谭厚章. 烧嘴偏转角度对气化炉渣层分布特性的影响[J]. 化工学报, 2023, 74(5): 1939-1949. |
[7] | 贾晓宇, 杨剑, 王博, 林梅, 王秋旺. 金属丝网毛细特性的孔隙尺度数值分析[J]. 化工学报, 2023, 74(5): 1928-1938. |
[8] | 葛运通, 王玮, 李楷, 肖帆, 于志鹏, 宫敬. 多相分散体系中微油滴与改性二氧化硅表面间作用力的AFM研究[J]. 化工学报, 2023, 74(4): 1651-1659. |
[9] | 张伟政, 赵吉军, 马学忠, 张琦璇, 庞益祥, 张俊涛. 湍流效应对高速机械密封端面型槽冷却性能影响分析[J]. 化工学报, 2023, 74(3): 1228-1238. |
[10] | 杨霄, 丁锐, 李墨含, 宋正昶. 氧浓度对微通道内甲烷均相/非均相耦合反应特性的影响[J]. 化工学报, 2022, 73(12): 5427-5437. |
[11] | 刘冉, 李杰, 王玉兵, 詹洪波, 张大林. 微小菱形离散肋通道中R134a的冷凝换热实验研究[J]. 化工学报, 2022, 73(11): 4938-4947. |
[12] | 林志敏, 王崇兆, 强国智, 刘树山, 王良璧. 润滑油在内插同轴交叉翼型涡产生器管内流动与传热特性分析[J]. 化工学报, 2022, 73(11): 4957-4973. |
[13] | 王之豪, 宋欣, 殷亚然, 张先明. 微流控纺丝中凝胶速率对螺旋纤维形貌的调控机制[J]. 化工学报, 2022, 73(11): 5158-5166. |
[14] | 赵文静, 屠治荣, 孟祥铠, 江锦波, 彭旭东. 非规则V形表面织构化机械端面密封性能研究[J]. 化工学报, 2022, 73(10): 4585-4593. |
[15] | 湛伟, 刘西洋, 朱春英, 马友光, 付涛涛. 台阶式并行微通道内液液两相流流型及其转变机理[J]. 化工学报, 2022, 73(1): 184-193. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||