化工学报 ›› 2021, Vol. 72 ›› Issue (8): 3919-3932.DOI: 10.11949/0438-1157.20201932
李宇明1(),刘梓烨1,张启扬1,王雅君1,崔国庆1,姜桂元1,贺德华2()
收稿日期:
2020-12-29
修回日期:
2021-04-12
出版日期:
2021-08-05
发布日期:
2021-08-05
通讯作者:
李宇明,贺德华
作者简介:
李宇明(1987—),女,博士,助理研究员,基金资助:
Yuming LI1(),Ziye LIU1,Qiyang ZHANG1,Yajun WANG1,Guoqing CUI1,Guiyuan JIANG1,Dehua HE2()
Received:
2020-12-29
Revised:
2021-04-12
Online:
2021-08-05
Published:
2021-08-05
Contact:
Yuming LI,Dehua HE
摘要:
氮掺杂碳材料以其独特的性质在催化研究领域具有广泛的应用。氮掺杂过程可引入缺陷位及氮物种,改善催化剂的物理化学性质、酸碱性和浸润性,并与活性物种产生相互作用,提升催化性能。本文从氮掺杂碳材料的制备及其在催化领域中的应用展开综述。常见的氮掺杂碳材料主要利用含氮前驱体,通过后合成法、原位合成法、催化生长法和模板法进行制备。通过改变前驱体种类、处理条件等制备参数,可实现孔道结构、氮物种类型、氮物种掺杂量及其与活性物种相互作用等性质的调变。开发大规模经济环保的制备方法,推动对缺陷构筑以及氮物种与活性组分相互作用机制的研究,是未来重要的研究方向。氮掺杂碳材料在催化领域表现出优越的性能,有望成为催化剂开发的前瞻领域,推动相关工业技术的进步。
中图分类号:
李宇明, 刘梓烨, 张启扬, 王雅君, 崔国庆, 姜桂元, 贺德华. 氮掺杂碳材料的制备及其在催化领域中的应用[J]. 化工学报, 2021, 72(8): 3919-3932.
Yuming LI, Ziye LIU, Qiyang ZHANG, Yajun WANG, Guoqing CUI, Guiyuan JIANG, Dehua HE. Preparation of nitrogen-doped carbon materials and their applications in catalysis[J]. CIESC Journal, 2021, 72(8): 3919-3932.
1 | Zheng D L, Cheng P, Yao Q Q, et al. Excess Se-doped MoSe2 and nitrogen-doped reduced graphene oxide composite as electrocatalyst for hydrogen evolution and oxygen reduction reaction[J]. Journal of Alloys and Compounds, 2020, 848: 156588. |
2 | Ren L T, Yi X L, Tong L H, et al. Nitrogen-doped ultrathin graphene encapsulated Cu nanoparticles decorated on SrTiO3 as an efficient water oxidation photocatalyst with activity comparable to BiVO4 under visible-light irradiation[J]. Applied Catalysis B: Environmental, 2020, 279: 119352. |
3 | Li N, Wang Z Y, Zhao K K, et al. Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method[J]. Carbon, 2010, 48(1): 255-259. |
4 | Cui K, Wang C, Luo Y, et al. Enhanced sodium storage kinetics of nitrogen rich cellulose-derived hierarchical porous carbon via subsequent boron doping[J]. Applied Surface Science, 2020, 531: 147302. |
5 | Chen G D, Wang X L, Yang C, et al. NaCl-promoted hierarchically porous carbon self-co-doped with iron and nitrogen for efficient oxygen reduction[J]. ChemistrySelect, 2020, 5(43): 13703-13710. |
6 | Wu M M, Tong S X, Jiang L L, et al. Nitrogen-doped porous carbon composite with three-dimensional conducting network for high rate supercapacitors[J]. Journal of Alloys and Compounds, 2020, 844: 156217. |
7 | Pan H F, Zhang Y M, Pan Y F, et al. Nitrogen-doped porous carbon with interconnected tubular structure for supercapacitors operating at sub-ambient temperatures[J]. Chemical Engineering Journal, 2020, 401: 126083. |
8 | He X L, Cai Y Q, Zhao W, et al. Synthesis and electrochemical properties of nitrogen-doped porous carbon for lithium ion batteries[J]. Journal of Physics and Chemistry of Solids, 2020, 147: 109639. |
9 | Yao S S, Zhang C J, Guo R D, et al. CoS2-decorated cobalt/nitrogen co-doped carbon nanofiber networks as dual functional electrocatalysts for enhancing electrochemical redox kinetics in lithium-sulfur batteries[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(36): 13600-13609. |
10 | Cheng H, Zhou Z Y, Liu T. Electro-spinning fabrication of nitrogen, phosphorus co-doped porous carbon nanofiber as an electro-chemiluminescent sensor for the determination of cyproheptadine[J]. RSC Advances, 2020, 10(39): 23091-23096. |
11 | Cao Y L, Mao S J, Li M M, et al. Metal/porous carbon composites for heterogeneous catalysis: old catalysts with improved performance promoted by N-doping[J]. ACS Catalysis, 2017, 7(12): 8090-8112. |
12 | Tan H B, Tang J, Kim J, et al. Rational design and construction of nanoporous iron- and nitrogen-doped carbon electrocatalysts for oxygen reduction reaction[J]. Journal of Materials Chemistry A, 2019, 7(4): 1380-1393. |
13 | Chen H C, Sun F G, Wang J T, et al. Nitrogen doping effects on the physical and chemical properties of mesoporous carbons[J]. The Journal of Physical Chemistry C, 2013, 117(16): 8318-8328. |
14 | Suslova E V, Arkhipova E A, Kalashnik A V, et al. Effect of the functionalization of nitrogen-doped carbon nanotubes on electrical conductivity[J]. Russian Journal of Physical Chemistry A, 2019, 93(10): 1952-1956. |
15 | Li R Z, Huang J F, Li J Y, et al. Nitrogen-doped hard carbon on nickel foam as free-standing anodes for high-performance sodium-ion batteries[J]. ChemElectroChem, 2020, 7(3): 604-613. |
16 | Cao Y, Lu H M, Xu B B, et al. Nitrogen/sulfur dual-doped porous carbon nanofibers with Co9S8 nanoparticles encapsulated by graphitic shells: a highly active stable free-standing air electrode for rechargeable non-aqueous Li-O2 batteries and primary alkaline Al-air batteries[J]. Chemical Engineering Journal, 2019, 378: 122247. |
17 | Guo H L, Feng Q C, Zhu J X, et al. Cobalt nanoparticle-embedded nitrogen-doped carbon/carbon nanotube frameworks derived from a metal-organic framework for tri-functional ORR, OER and HER electrocatalysis[J]. Journal of Materials Chemistry A, 2019, 7(8): 3664-3672. |
18 | Thomas M, Illathvalappil R, Kurungot S, et al. Graphene oxide sheathed ZIF-8 microcrystals: engineered precursors of nitrogen-doped porous carbon for efficient oxygen reduction reaction (ORR) electrocatalysis[J]. ACS Applied Materials & Interfaces, 2016, 8(43): 29373-29382. |
19 | Liang Y, Lu Y H, Xiao G Y, et al. Hierarchical porous nitrogen-doped carbon microspheres after thermal rearrangement as high performance electrode materials for supercapacitors[J]. Applied Surface Science, 2020, 529: 147141. |
20 | Cheng Z Q, Wang Z W, Wu P C, et al. Mass fabrication of oxygen and nitrogen co-doped 3D hierarchical porous carbon nanosheets by an explosion-assisted strategy for supercapacitor and dye adsorption application[J]. Applied Surface Science, 2020, 529: 147079. |
21 | Zhang Q, Fu M X, Ning G Y, et al. Co/FeC core-nitrogen doped hollow carbon shell structure with tunable shell-thickness for oxygen evolution reaction[J]. Journal of Colloid and Interface Science, 2020, 580: 794-802. |
22 | Su P P, Huang W J, Zhang J W, et al. Fe atoms anchored on defective nitrogen doped hollow carbon spheres as efficient electrocatalysts for oxygen reduction reaction[J]. Nano Research, 2021, 14(4): 1069-1077. |
23 | Pang B L, Zhang M L, Zhou C, et al. Nitrogen-doped carbon nano-onions decorated on graphene network: a novel all-carbon composite counter electrode for dye-sensitized solar cell with a 10.28% power conversion efficiency[J]. Solar RRL, 2020, 4(9): 2000263. |
24 | Shi K Y, Liu J W, Chen R. Nitrogen-doped nano-carbon onion rings for energy storage in lithium-ion capacitors[J]. Journal of Energy Storage, 2020, 31: 101609. |
25 | Li X W, Qi T, Wang J, et al. Enhanced catalytic performance of nitrogen-doped carbon supported FeOx-based catalyst derived from electrospun nanofiber crosslinked N, Fe-containing MOFs for efficient hydrogenation of nitroarenes[J]. Molecular Catalysis, 2019, 477: 110544. |
26 | Sun K K, Sun J L, Lu G P, et al. Enhanced catalytic activity of cobalt nanoparticles encapsulated with an N-doped porous carbon shell derived from hollow ZIF-8 for efficient synthesis of nitriles from primary alcohols in water[J]. Green Chemistry, 2019, 21(16): 4334-4340. |
27 | Wang L L, Wang L J, Jin H Y, et al. Nitrogen-doped carbon nanotubes with variable basicity: preparation and catalytic properties[J]. Catalysis Communications, 2011, 15(1): 78-81. |
28 | Sun Z Q, Zhao L, Liu C H, et al. Fast adsorption of BPA with high capacity based on π-π electron donor-acceptor and hydrophobicity mechanism using an in situ sp2 C dominant N-doped carbon[J]. Chemical Engineering Journal, 2020, 381: 122510. |
29 | Xia D S, Tang F, Yao X Z, et al. Seeded growth of branched iron-nitrogen-doped carbon nanotubes as a high performance and durable non-precious fuel cell cathode[J]. Carbon, 2020, 162: 300-307. |
30 | Li L X, Liu Y C, Geng X, et al. Synthesis and electrochemical performance of nitrogen-doped carbon nanotubes[J]. Acta Physico-Chimica Sinica, 2011, 27(2): 443-448. |
31 | Chizari K, Janowska I, Houllé M, et al. Tuning of nitrogen-doped carbon nanotubes as catalyst support for liquid-phase reaction[J]. Applied Catalysis A: General, 2010, 380(1/2): 72-80. |
32 | Chen Z, Yang W J, Wu Y, et al. Atomic iron on mesoporous N-doped carbon to achieve dehydrogenation reaction at room temperature[J]. Nano Research, 2020, 13(11): 3075-3081. |
33 | Luo M M, Liang Z, Liu C, et al. Single-atom manganese and nitrogen co-doped graphene as low-cost catalysts for the efficient CO oxidation at room temperature[J]. Applied Surface Science, 2021, 536: 147809. |
34 | Salinas-Torres D, Navlani-García M, Mori K, et al. Nitrogen-doped carbon materials as a promising platform toward the efficient catalysis for hydrogen generation[J]. Applied Catalysis A: General, 2019, 571: 25-41. |
35 | Kobina Sam D, Kobina Sam E, Lv X. Application of biomass-derived nitrogen-doped carbon aerogels in electrocatalysis and supercapacitors[J]. ChemElectroChem, 2020, 7(18): 3695-3712. |
36 | Panchakarla L S, Govindaraj A, Rao C N R. Boron- and nitrogen-doped carbon nanotubes and graphene[J]. Inorganica Chimica Acta, 2010, 363(15): 4163-4174. |
37 | Guo J J, Huo J J, Liu Y, et al. Nitrogen-doped porous carbon supported nonprecious metal single-atom electrocatalysts: from synthesis to application[J]. Small Methods, 2019, 3(9): 1900159. |
38 | Song M X, Song Y H, Sha W B, et al. Recent advances in non-precious transition metal/nitrogen-doped carbon for oxygen reduction electrocatalysts in PEMFCs[J]. Catalysts, 2020, 10(1): 141. |
39 | Nxumalo E, Coville N. Nitrogen doped carbon nanotubes from organometallic compounds: a review[J]. Materials, 2010, 3(3): 2141-2171. |
40 | Wu G, Johnston C M, Mack N H, et al. Synthesis–structure–performance correlation for polyaniline-Me-C non-precious metal cathode catalysts for oxygen reduction in fuel cells[J]. Journal of Materials Chemistry, 2011, 21(30): 11392. |
41 | Wang S P, Han C L, Wang J, et al. Controlled synthesis of ordered mesoporous carbohydrate-derived carbons with flower-like structure and N-doping by self-transformation[J]. Chemistry of Materials, 2014, 26(23): 6872-6877. |
42 | Chen S, Bi J Y, Zhao Y, et al. Nitrogen-doped carbon nanocages as efficient metal-free electrocatalysts for oxygen reduction reaction[J]. Advanced Materials, 2012, 24(41): 5593-5597. |
43 | Lv J J, Zhao J, Fang H, et al. Incorporating nitrogen-doped graphene quantum dots and Ni3S2 nanosheets: a synergistic electrocatalyst with highly enhanced activity for overall water splitting[J]. Small, 2017, 13(24): 1700264. |
44 | Maldonado S, Morin S, Stevenson K J. Structure, composition, and chemical reactivity of carbon nanotubes by selective nitrogen doping[J]. Carbon, 2006, 44(8): 1429-1437. |
45 | Schiros T, Nordlund D, Pálová L, et al. Connecting dopant bond type with electronic structure in N-doped graphene[J]. Nano Letters, 2012, 12(8): 4025-4031. |
46 | Ham K, Shin D, Lee J. The role of lone-pair electrons in Pt-N interactions for the oxygen reduction reaction in polymer exchange membrane fuel cells[J]. ChemSusChem, 2020, 13(7): 1660. |
47 | Wang A, Fan R Q, Pi X X, et al. Nitrogen-doped microporous carbons derived from pyridine ligand-based metal-organic complexes as high-performance SO2 adsorption sorbents[J]. ACS Applied Materials & Interfaces, 2018, 10(43): 37407-37416. |
48 | Wu G, Mack N H, Gao W, et al. Nitrogen-doped graphene-rich catalysts derived from heteroatom polymers for oxygen reduction in nonaqueous lithium-O2 battery cathodes[J]. ACS Nano, 2012, 6(11): 9764-9776. |
49 | Li O L, Prabakar K, Kaneko A, et al. Exploration of Lewis basicity and oxygen reduction reaction activity in plasma-tailored nitrogen-doped carbon electrocatalysts[J]. Catalysis Today, 2019, 337: 102-109. |
50 | Li B, Sun X, Su D. Calibration of the basic strength of the nitrogen groups on the nanostructured carbon materials[J]. Physical Chemistry Chemical Physics, 2015, 17(10): 6691-6694. |
51 | Feng H, Ma J, Hu Z. Nitrogen-doped carbon nanotubes functionalized by transition metal atoms: a density functional study[J]. Journal of Materials Chemistry, 2010, 20(9): 1702-1708. |
52 | Wang X S, Pan H Y, Lin Q, et al. One-step synthesis of nitrogen-doped hydrophilic mesoporous carbons from chitosan-based triconstituent system for drug release[J]. Nanoscale Research Letters, 2019, 14(1): 1-12. |
53 | Yang P, Huang N, Leng Y X, et al. Wettability and biocompatibility of nitrogen-doped hydrogenated amorphous carbon films: effect of nitrogen[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2006, 242(1/2): 22-25. |
54 | Martin-Martinez M, Ribeiro R S, Machado B F, et al. Role of nitrogen doping on the performance of carbon nanotube catalysts: a catalytic wet peroxide oxidation application[J]. ChemCatChem, 2016, 8(12): 2068-2078. |
55 | Yin L C, Liang J, Zhou G M, et al. Understanding the interactions between lithium polysulfides and N-doped graphene using density functional theory calculations[J]. Nano Energy, 2016, 25: 203-210. |
56 | Zhou J, Lin N, Cai W L, et al. Synthesis of S/CoS2 nanoparticles-embedded N-doped carbon polyhedrons from polyhedrons ZIF-67 and their properties in lithium-sulfur batteries[J]. Electrochimica Acta, 2016, 218: 243-251. |
57 | Chen S S, Qi P Y, Chen J, et al. Platinum nanoparticles supported on N-doped carbon nanotubes for the selective oxidation of glycerol to glyceric acid in a base-free aqueous solution[J]. RSC Advances, 2015, 5(40): 31566-31574. |
58 | Liu D, Dai L M, Lin X N, et al. Chemical approaches to carbon-based metal-free catalysts[J]. Advanced Materials, 2019, 31(13): 1804863. |
59 | Zhang L S, Liang X Q, Song W G, et al. Identification of the nitrogen species on N-doped graphene layers and Pt/NG composite catalyst for direct methanol fuel cell[J]. Physical Chemistry Chemical Physics, 2010, 12(38): 12055-12059. |
60 | Luo W, Wang B, Heron C G, et al. Pyrolysis of cellulose under ammonia leads to nitrogen-doped nanoporous carbon generated through methane formation[J]. Nano Letters, 2014, 14(4): 2225-2229. |
61 | Geng Z, Xiao Q, Lv H, et al. One-step synthesis of microporous carbon monoliths derived from biomass with high nitrogen doping content for highly selective CO2 capture[J]. Scientific Reports, 2016, 6: 30049. |
62 | Lai L F, Potts J R, Zhan D, et al. Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction[J]. Energy & Environmental Science, 2012, 5(7): 7936. |
63 | Domga, Karnan M, Oladoyinbo F, et al. A simple, economical one-pot microwave assisted synthesis of nitrogen and sulfur co-doped graphene for high energy supercapacitors[J]. Electrochimica Acta, 2020, 341: 135999. |
64 | Sari F N I, Ting J M. One step microwaved-assisted hydrothermal synthesis of nitrogen doped graphene for high performance of supercapacitor[J]. Applied Surface Science, 2015, 355: 419-428. |
65 | Yu P P, Li Y Z, Yu X Y, et al. Polyaniline nanowire arrays aligned on nitrogen-doped carbon fabric for high-performance flexible supercapacitors[J]. Langmuir, 2013, 29(38): 12051-12058. |
66 | Lai L, Zhao Y, Ying S, et al. Hierarchically porous N-doped carbon derived from supramolecular assembled polypyrrole as a high performance supercapacitor electrode material[J]. RSC Advances, 2018, 8(33): 18714-18722. |
67 | Zhang H, Xu J Y, Jin Y W, et al. Quantum effects allow the construction of two-dimensional Co3O4-embedded nitrogen-doped porous carbon nanosheet arrays from bimetallic MOFs as bifunctional oxygen electrocatalysts[J]. Chemistry - A European Journal, 2018, 24(54): 14522-14530. |
68 | Chen L F, Lu Y, Yu L, et al. Designed formation of hollow particle-based nitrogen-doped carbon nanofibers for high-performance supercapacitors[J]. Energy & Environmental Science, 2017, 10(8): 1777-1783. |
69 | Liu Q, Duan Y X, Zhao Q P, et al. Direct synthesis of nitrogen-doped carbon nanosheets with high surface area and excellent oxygen reduction performance[J]. Langmuir, 2014, 30(27): 8238-8245. |
70 | Lv J J, Li Y L, Wu S J, et al. Oxygen species on nitrogen-doped carbon nanosheets as efficient active sites for multiple electrocatalysis[J]. ACS Applied Materials & Interfaces, 2018, 10(14): 11678-11688. |
71 | Han B, Yu S P, Wang Z M, et al. Imidazole polymerized ionic liquid as a precursor for an iron-nitrogen-doped carbon electrocatalyst used in the oxygen reduction reaction[J]. International Journal of Hydrogen Energy, 2020, 45(54): 29645-29654. |
72 | Chen M, Xu J, Liu Y M, et al. Enhanced activity of spinel-type Ga2O3-Al2O3 mixed oxide for the dehydrogenation of propane in the presence of CO2[J]. Catalysis Letters, 2008, 124(3/4): 369-375. |
73 | Shi P C, Yi J D, Liu T T, et al. Hierarchically porous nitrogen-doped carbon nanotubes derived from core–shell ZnO@zeolitic imidazolate framework nanorods for highly efficient oxygen reduction reactions[J]. Journal of Materials Chemistry A, 2017, 5(24): 12322-12329. |
74 | Chen T, Kong W H, Fan M T, et al. Chelation-assisted formation of multi-yolk-shell Co4N@carbon nanoboxes for self-discharge-suppressed high-performance Li-SeS2 batteries[J]. Journal of Materials Chemistry A, 2019, 7(35): 20302-20309. |
75 | Zheng L, Yu S Y, Lu X Y, et al. Two-dimensional bimetallic Zn/Fe-metal-organic framework (MOF)-derived porous carbon nanosheets with a high density of single/paired Fe atoms as high-performance oxygen reduction catalysts[J]. ACS Applied Materials & Interfaces, 2020, 12(12): 13878-13887. |
76 | Yang S L, Zhang J, Peng L, et al. A metal-organic framework/polymer derived catalyst containing single-atom nickel species for electrocatalysis[J]. Chemical Science, 2020, 11(40): 10991-10997. |
77 | Hu X L, Luo G, Zhao Q N, et al. Ru single atoms on N-doped carbon by spatial confinement and ionic substitution strategies for high-performance Li-O2 batteries[J]. Journal of the American Chemical Society, 2020, 142(39): 16776-16786. |
78 | Sun W, Du L, Tan Q, et al. Engineering of nitrogen coordinated single cobalt atom moieties for oxygen electroreduction[J]. ACS Applied Materials & Interfaces, 2019, 11(44): 41258-41266. |
79 | Vega-Diaz S M, González V J, Morelos-Gomez A, et al. Pyrrolic nitrogen-doped multiwall carbon nanotubes using ball-milled slag-SiC mixtures as a catalyst by aerosol assisted chemical vapor deposition[J]. Materials Research Express, 2020, 7(2): 025602. |
80 | Quevedo A, Bussi J, Tancredi N, et al. Growth of nitrogen-doped carbon nanotubes using Ni/La2Zr2O7 as catalyst: electrochemical and magnetic studies[J]. Carbon, 2021, 171: 907-920. |
81 | Zhao C M, Wang Y, Li Z J, et al. Solid-diffusion synthesis of single-atom catalysts directly from bulk metal for efficient CO2 reduction[J]. Joule, 2019, 3(2): 584-594. |
82 | Liang H W, Wei W, Wu Z S, et al. Mesoporous metal-nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction[J]. Journal of the American Chemical Society, 2013, 135(43): 16002-16005. |
83 | Sun L, Zhou H, Li L, et al. Double soft-template synthesis of nitrogen/sulfur-codoped hierarchically porous carbon materials derived from protic ionic liquid for supercapacitor[J]. ACS Applied Materials & Interfaces, 2017, 9(31): 26088-26095. |
84 | Yan Y B, Zhai D, Liu Y, et al. van der Waals heterojunction between a bottom-up grown doped graphene quantum dot and graphene for photoelectrochemical water splitting[J]. ACS Nano, 2020, 14(1): 1185-1195. |
85 | Xu X, Yang L J, Jiang S J, et al. High reaction activity of nitrogen-doped carbon nanotubes toward the electrooxidation of nitric oxide[J]. Chemical Communications, 2011, 47(25): 7137. |
86 | Xu X, Jiang S J, Hu Z, et al. Nitrogen-doped carbon nanotubes: high electrocatalytic activity toward the oxidation of hydrogen peroxide and its application for biosensing[J]. ACS Nano, 2010, 4(7): 4292-4298. |
87 | Liu Y M, Su Y, Quan X, et al. Facile ammonia synthesis from electrocatalytic N2 reduction under ambient conditions on N-doped porous carbon[J]. ACS Catalysis, 2018, 8(2): 1186-1191. |
88 | Mukherjee S, Cullen D A, Karakalos S, et al. Metal-organic framework-derived nitrogen-doped highly disordered carbon for electrochemical ammonia synthesis using N2 and H2O in alkaline electrolytes[J]. Nano Energy, 2018, 48: 217-226. |
89 | Fan L, Liu P F, Yan X, et al. Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis[J]. Nature Communications, 2016, 7: 10667. |
90 | He Q, Liu D B, Lee J H, et al. Electrochemical conversion of CO2 to syngas with controllable CO/H2 ratios over Co and Ni single-atom catalysts[J]. Angewandte Chemie International Edition, 2020, 59(8): 3033-3037. |
91 | Karapinar D, Huan N T, Ranjbar Sahraie N, et al. Electroreduction of CO2 on single-site copper-nitrogen-doped carbon material: selective formation of ethanol and reversible restructuration of the metal sites[J]. Angewandte Chemie International Edition, 2019, 58(42): 15098-15103. |
92 | Yang Q H, Yang C C, Lin C H, et al. Metal-organic-framework-derived hollow N-doped porous carbon with ultrahigh concentrations of single Zn atoms for efficient carbon dioxide conversion[J]. Angewandte Chemie International Edition, 2019, 58(11): 3511-3515. |
93 | Wang X J, Zhou J W, Fu H, et al. MOF derived catalysts for electrochemical oxygen reduction[J]. J. Mater. Chem. A, 2014, 2(34): 14064-14070. |
94 | Chaikittisilp W, Torad N L, Li C L, et al. Synthesis of nanoporous carbon-cobalt-oxide hybrid electrocatalysts by thermal conversion of metal-organic frameworks[J]. Chemistry - A European Journal, 2014, 20(15): 4217-4221. |
95 | 水恒心, 潘冯弘康, 金田, 等. 双功能yolk-shell钴@钴氮碳掺杂氧电极催化剂[J]. 化工学报, 2018, 69(11): 4702-4712. |
Shui H X, Pan-Feng H K, Jin T, et al. York-shell Co@Co-N/C of bifunctional oxygen electrocatalysts[J]. CIESC Journal, 2018, 69(11): 4702-4712. | |
96 | Zhang Z Q, Wu Q, Mao K, et al. Efficient ternary synergism of platinum/tin oxide/nitrogen-doped carbon leading to high-performance ethanol oxidation[J]. ACS Catalysis, 2018, 8(9): 8477-8483. |
97 | Zhang L L, Wang A Q, Wang W T, et al. Co-N-C catalyst for C-C coupling reactions: on the catalytic performance and active sites[J]. ACS Catalysis, 2015, 5(11): 6563-6572. |
98 | Dai X Y, Chen Z, Yao T, et al. Single Ni sites distributed on N-doped carbon for selective hydrogenation of acetylene[J]. Chem. Commun., 2017, 53(84): 11568-11571. |
99 | Wang Y, Yao J, Li H R, et al. Highly selective hydrogenation of phenol and derivatives over a Pd@carbon nitride catalyst in aqueous media[J]. Journal of the American Chemical Society, 2011, 133(8): 2362-2365. |
100 | Lu J Z, Yang L J, Xu B L, et al. Promotion effects of nitrogen doping into carbon nanotubes on supported iron Fischer-Tropsch catalysts for lower olefins[J]. ACS Catalysis, 2014, 4(2): 613-621. |
101 | Zhuo O, Yang L J, Gao F J, et al. Stabilizing the active phase of iron-based Fischer-Tropsch catalysts for lower olefins: mechanism and strategy[J]. Chemical Science, 2019, 10(24): 6083-6090. |
102 | Li S, Yao N, Zhao F D, et al. Nitrogen-doped carbon species: a promising nonmetallic promoter for the Co/SiO2 Fischer-Tropsch synthesis catalyst[J]. Catalysis Science & Technology, 2016, 6(7): 2188-2194. |
103 | Zhao D, Li Y M, Han S L, et al. ZnO nanoparticles encapsulated in nitrogen-doped carbon material and silicalite-1 composites for efficient propane dehydrogenation[J]. iScience, 2019, 13: 269-276. |
104 | Li Y M, Zhang Q Y, Yu X, et al. Efficient Fe based catalyst with nitrogen doped carbon material modification for propane non-oxidative dehydrogenation[J]. Carbon Resources Conversion, 2020, 3: 140-144. |
[1] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[2] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[3] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[4] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[5] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[6] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[7] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[8] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[9] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[10] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[11] | 周继鹏, 何文军, 李涛. 异形催化剂上乙烯催化氧化失活动力学反应工程计算[J]. 化工学报, 2023, 74(6): 2416-2426. |
[12] | 张希庆, 王琰婷, 徐彦红, 常淑玲, 孙婷婷, 薛定, 张立红. Mg量影响的纳米片负载Pt-In催化异丁烷脱氢性能[J]. 化工学报, 2023, 74(6): 2427-2435. |
[13] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
[14] | 朱风, 陈凯琳, 黄小凤, 鲍银珠, 李文斌, 刘嘉鑫, 吴玮强, 高王伟. KOH改性电石渣脱除羰基硫的性能研究[J]. 化工学报, 2023, 74(6): 2668-2679. |
[15] | 王辰, 史秀锋, 武鲜凤, 魏方佳, 张昊虹, 车寅, 吴旭. 氧化还原法制备Mn3O4催化剂及其甲苯催化氧化性能与机理研究[J]. 化工学报, 2023, 74(6): 2447-2457. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||