化工学报 ›› 2021, Vol. 72 ›› Issue (9): 4445-4457.DOI: 10.11949/0438-1157.20210090
收稿日期:
2021-01-13
修回日期:
2021-03-30
出版日期:
2021-09-05
发布日期:
2021-09-05
通讯作者:
席跃宾,杨东杰
作者简介:
王欢(1988—),男,博士,助理研究员,基金资助:
Huan WANG1(),Fangbao FU1,Qiong LI1,Yuebin XI2(),Dongjie YANG1()
Received:
2021-01-13
Revised:
2021-03-30
Online:
2021-09-05
Published:
2021-09-05
Contact:
Yuebin XI,Dongjie YANG
摘要:
木质素是自然界储量丰富的可再生资源,含碳量高且具有三维网状结构和大量共轭结构。碳材料是一类具有极大应用价值的催化材料,特别是在电催化、热催化和光催化领域。以木质素为原料制备高活性的木质素碳基催化剂是实现木质素高附加值利用有效的途径之一。木质素碳催化材料研究涉及化学、化工和物理等多个学科领域,制备性能优异和稳定性良好的木质素碳基催化剂仍充满挑战。本文主要总结了木质素碳材料的制备研究进展,以及介绍了木质素碳材料在光催化、热催化和电催化等领域的应用研究现状。此外,还分析了当前木质素碳基催化材料存在的问题,并展望了未来的发展趋势和重点研究方向。
中图分类号:
王欢, 符方宝, 李琼, 席跃宾, 杨东杰. 木质素碳纳米材料制备及在催化中的应用研究进展[J]. 化工学报, 2021, 72(9): 4445-4457.
Huan WANG, Fangbao FU, Qiong LI, Yuebin XI, Dongjie YANG. Research progress on the preparation of lignin-derived carbon materials and their application in catalysis[J]. CIESC Journal, 2021, 72(9): 4445-4457.
图5 分级木质素多孔碳的制备流程及其微结构特性[53]
Fig.5 The preparation process of hierarchical lignin-derived porous carbon and its micro-morphology and pore structure characteristics[53]
图8 木质素碳/ZnO纳米花复合材料光催化降解抗生素性能及其光催化机理[47]
Fig. 8 The photocatalytic degradation properties of lignin-derived carbon/ZnO nanoflower composites and their photocatalytic mechanism[47]
图9 N,S,Cl共掺杂的3D木质素多孔碳的微观形貌和电化学性能[52]
Fig.9 Micro-morphology and electrochemical properties of 3D porous lignin-derived multi-doped (N, S, Cl) carbon[52]
9 | Yu J, Li L, Qian Y, et al. Facile and green preparation of high UV-blocking lignin/titanium dioxide nanocomposites for developing natural sunscreens[J]. Industrial & Engineering Chemistry Research, 2018, 57(46): 15740-15748. |
10 | Chen K, Qiu X Q, Yang D J, et al. Amino acid-functionalized polyampholytes as natural broad-spectrum antimicrobial agents for high-efficient personal protection[J]. Green Chemistry, 2020, 22(19): 6357-6371. |
11 | Li Y Y, Qiu X Q, Qian Y, et al. pH-responsive lignin-based complex micelles: preparation, characterization and application in oral drug delivery[J]. Chemical Engineering Journal, 2017, 327: 1176-1183. |
12 | Li Y Y, Yang D J, Lu S, et al. Encapsulating TiO2 in lignin-based colloidal spheres for high sunscreen performance and weak photocatalytic activity[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(6): 6234-6242. |
13 | Qian Y, Qiu X Q, Zhong X W, et al. Lignin reverse micelles for UV-absorbing and high mechanical performance thermoplastics[J]. Industrial & Engineering Chemistry Research, 2015, 54(48): 12025-12030. |
14 | Wang H, Lin W S, Qiu X Q, et al. In situ synthesis of flowerlike lignin/ZnO composite with excellent UV-absorption properties and its application in polyurethane[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 3696-3705. |
15 | Wang H, Wang Y Y, Fu F B, et al. Controlled preparation of lignin/titanium dioxide hybrid composite particles with excellent UV aging resistance and its high value application[J]. International Journal of Biological Macromolecules, 2020, 150: 371-379. |
16 | Wang H, Qiu X Q, Liu W F, et al. A novel lignin/ZnO hybrid nanocomposite with excellent UV-absorption ability and its application in transparent polyurethane coating[J]. Industrial & Engineering Chemistry Research, 2017, 56(39): 11133-11141. |
17 | Saha D, Li Y C, Bi Z H, et al. Studies on supercapacitor electrode material from activated lignin-derived mesoporous carbon[J]. Langmuir, 2014, 30(3): 900-910. |
18 | Jeon J W, Zhang L B, Lutkenhaus J L, et al. Controlling porosity in lignin-derived nanoporous carbon for supercapacitor applications[J]. ChemSusChem, 2015, 8(3): 428-432. |
19 | Zhang B P, Yang D J, Qiu X Q, et al. Influences of aggregation behavior of lignin on the microstructure and adsorptive properties of lignin-derived porous carbons by potassium compound activation[J]. Journal of Industrial and Engineering Chemistry, 2020, 82: 220-227. |
20 | Zhu J D, Yan C Y, Zhang X, et al. A sustainable platform of lignin: from bioresources to materials and their applications in rechargeable batteries and supercapacitors[J]. Progress in Energy and Combustion Science, 2020, 76: 100788. |
21 | Kai D, Tan M J, Chee P L, et al. Towards lignin-based functional materials in a sustainable world[J]. Green Chemistry, 2016, 18(5): 1175-1200. |
22 | Espinoza-Acosta J L, Torres-Chávez P I, Olmedo-Martínez J L, et al. Lignin in storage and renewable energy applications: a review[J]. Journal of Energy Chemistry, 2018, 27(5): 1422-1438. |
23 | Hao Z Q, Cao J P, Dang Y L, et al. Three-dimensional hierarchical porous carbon with high oxygen content derived from organic waste liquid with superior electric double layer performance[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(4): 4037-4046. |
24 | Zhang W L, Lei Y J, Ming F W, et al. Lignin laser lithography: a direct-write method for fabricating 3D graphene electrodes for microsupercapacitors[J]. Advanced Energy Materials, 2018, 8(27): 1801840. |
1 | Wang C, Kelley S S, Venditti R A. Lignin-based thermoplastic materials[J]. ChemSusChem, 2016, 9(8): 770-783. |
2 | Huang S Q, Su S Y, Gan H B, et al. Facile fabrication and characterization of highly stretchable lignin-based hydroxyethyl cellulose self-healing hydrogel[J]. Carbohydrate Polymers, 2019, 223: 115080. |
3 | Xiong W L, Qiu X Q, Yang D J, et al. A simple one-pot method to prepare UV-absorbent lignin/silica hybrids based on alkali lignin from pulping black liquor and sodium metasilicate[J]. Chemical Engineering Journal, 2017, 326: 803-810. |
4 | Xiong W L, Yang D J, Zhong R S, et al. Preparation of lignin-based silica composite submicron particles from alkali lignin and sodium silicate in aqueous solution using a direct precipitation method[J]. Industrial Crops and Products, 2015, 74: 285-292. |
5 | Lin X L, Wu L J, Huang S Q, et al. Effect of lignin-based amphiphilic polymers on the cellulase adsorption and enzymatic hydrolysis kinetics of cellulose[J]. Carbohydrate Polymers, 2019, 207: 52-58. |
6 | Li J R, Li H, Yuan Z, et al. Role of sulfonation in lignin-based material for adsorption removal of cationic dyes[J]. International Journal of Biological Macromolecules, 2019, 135: 1171-1181. |
7 | Zhang B P, Yang D J, Wang H, et al. Activation of enzymatic hydrolysis lignin by NaOH/urea aqueous solution for enhancing its sulfomethylation reactivity[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 1120-1128. |
8 | Zhou Y J, Qian Y, Wang J Y, et al. Bioinspired lignin-polydopamine nanocapsules with strong bioadhesion for long-acting and high-performance natural sunscreens[J]. Biomacromolecules, 2020, 21(8): 3231-3241. |
25 | Zhou Z P, Chen F, Kuang T R, et al. Lignin-derived hierarchical mesoporous carbon and NiO hybrid nanospheres with exceptional Li-ion battery and pseudocapacitive properties[J]. Electrochimica Acta, 2018, 274: 288-297. |
26 | Fu F B, Yang D J, Wang H, et al. Three-dimensional porous framework lignin-derived carbon/ZnO composite fabricated by a facile electrostatic self-assembly showing good stability for high-performance supercapacitors[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(19): 16419-16427. |
27 | Zhang W L, Lin H B, Lin Z Q, et al. 3 D hierarchical porous carbon for supercapacitors prepared from lignin through a facile template-free method[J]. ChemSusChem, 2015, 8(12): 2114-2122. |
28 | Xi Y B, Wang Y Y, Yang D J, et al. K2CO3 activation enhancing the graphitization of porous lignin carbon derived from enzymatic hydrolysis lignin for high performance lithium-ion storage[J]. Journal of Alloys and Compounds, 2019, 785: 706-714. |
29 | Zhao Z H, Hao S M, Hao P, et al. Lignosulphonate-cellulose derived porous activated carbon for supercapacitor electrode[J]. Journal of Materials Chemistry A, 2015, 3(29): 15049-15056. |
30 | Gonzalez-Serrano E, Cordero T, Rodriguez-Mirasol J, et al. Removal of water pollutants with activated carbons prepared from H3PO4 activation of lignin from kraft black liquors[J]. Water Research, 2004, 38(13): 3043-3050. |
31 | Wang J C, Kaskel S. KOH activation of carbon-based materials for energy storage[J]. Journal of Materials Chemistry, 2012, 22(45): 23710-23725. |
32 | Zhang B P, Yang D J, Qian Y, et al. Engineering a lignin-based hollow carbon with opening structure for highly improving the photocatalytic activity and recyclability of ZnO[J]. Industrial Crops and Products, 2020, 155: 112773. |
33 | Liu W S, Yao Y M, Fu O L, et al. Lignin-derived carbon nanosheets for high-capacitance supercapacitors[J]. RSC Adv., 2017, 7(77): 48537-48543. |
34 | Xie A, Dai J D, Chen Y, et al. NaCl-template assisted preparation of porous carbon nanosheets started from lignin for efficient removal of tetracycline[J]. Advanced Powder Technology, 2019, 30(1): 170-179. |
35 | Li H, Yuan D, Tang C H, et al. Lignin-derived interconnected hierarchical porous carbon monolith with large areal/volumetric capacitances for supercapacitor[J]. Carbon, 2016, 100: 151-157. |
36 | Bu Y F, Sun T, Cai Y J, et al. Compressing carbon nanocages by capillarity for optimizing porous structures toward ultrahigh-volumetric-performance supercapacitors[J]. Advanced Materials, 2017, 29(24): 1700470. |
37 | Salinas-Torres D, Ruiz-Rosas R, Valero-Romero M J, et al. Asymmetric capacitors using lignin-based hierarchical porous carbons[J]. Journal of Power Sources, 2016, 326: 641-651. |
38 | Song Y G, Liu J L, Sun K, et al. Synthesis of sustainable lignin-derived mesoporous carbon for supercapacitors using a nano-sized MgO template coupled with Pluronic F127[J]. RSC Adv., 2017, 7(76): 48324-48332. |
39 | Li H, Zhao Y H, Liu S Q, et al. Hierarchical porous carbon monolith derived from lignin for high areal capacitance supercapacitors[J]. Microporous and Mesoporous Materials, 2020, 297: 109960. |
40 | Ma C, Li Z Y, Li J J, et al. Lignin-based hierarchical porous carbon nanofiber films with superior performance in supercapacitors[J]. Applied Surface Science, 2018, 456: 568-576. |
41 | Wang S X, Yang L, Stubbs L P, et al. Lignin-derived fused electrospun carbon fibrous mats as high performance anode materials for lithium ion batteries[J]. ACS Applied Materials & Interfaces, 2013, 5(23): 12275-12282. |
42 | Lai C L, Zhou Z P, Zhang L F, et al. Free-standing and mechanically flexible mats consisting of electrospun carbon nanofibers made from a natural product of alkali lignin as binder-free electrodes for high-performance supercapacitors[J]. Journal of Power Sources, 2014, 247: 134-141. |
43 | Kim C, Yang K S, Kojima M, et al. Fabrication of electrospinning-derived carbon nanofiber webs for the anode material of lithium-ion secondary batteries[J]. Advanced Functional Materials, 2006, 16(18): 2393-2397. |
44 | Liu S T, Zhou J S, Song H H. 2D Zn-hexamine coordination frameworks and their derived N-rich porous carbon nanosheets for ultrafast sodium storage[J]. Advanced Energy Materials, 2018, 8(22): 1800569. |
45 | Wang M, Liu X, Song P P, et al. Transformation of lignosulfonate into graphene-like 2D nanosheets: self-assembly mechanism and their potential in biomedical and electrical applications[J]. International Journal of Biological Macromolecules, 2019, 128: 621-628. |
46 | Fu F B, Yang D J, Zhang W L, et al. Green self-assembly synthesis of porous lignin-derived carbon quasi-nanosheets for high-performance supercapacitors[J]. Chemical Engineering Journal, 2020, 392: 123721. |
47 | Zhang B P, Yang D J, Qiu X Q, et al. Fabricating ZnO/lignin-derived flower-like carbon composite with excellent photocatalytic activity and recyclability[J]. Carbon, 2020, 162: 256-266. |
48 | Zhang W, Yu C Y, Chang L B, et al. Three-dimensional nitrogen-doped hierarchical porous carbon derived from cross-linked lignin derivatives for high performance supercapacitors[J]. Electrochimica Acta, 2018, 282: 642-652. |
49 | Liu F Y, Wang Z X, Zhang H T, et al. Nitrogen, oxygen and sulfur co-doped hierarchical porous carbons toward high-performance supercapacitors by direct pyrolysis of kraft lignin[J]. Carbon, 2019, 149: 105-116. |
50 | Zhang K J, Liu M R, Zhang T Z, et al. High-performance supercapacitor energy storage using a carbon material derived from lignin by bacterial activation before carbonization[J]. Journal of Materials Chemistry A, 2019, 7(47): 26838-26848. |
51 | Guo N N, Li M, Sun X K, et al. Enzymatic hydrolysis lignin derived hierarchical porous carbon for supercapacitors in ionic liquids with high power and energy densities[J]. Green Chemistry, 2017, 19(11): 2595-2602. |
52 | Shen Y X, Li Y H, Yang G X, et al. Lignin derived multi-doped (N, S, Cl) carbon materials as excellent electrocatalyst for oxygen reduction reaction in proton exchange membrane fuel cells[J]. Journal of Energy Chemistry, 2020, 44: 106-114. |
53 | Xi Y B, Huang S, Yang D J, et al. Hierarchical porous carbon derived from the gas-exfoliation activation of lignin for high-energy lithium-ion batteries[J]. Green Chemistry, 2020, 22(13): 4321-4330. |
54 | Wang H, Qiu X Q, Liu W F, et al. Facile preparation of well-combined lignin-based carbon/ZnO hybrid composite with excellent photocatalytic activity[J]. Applied Surface Science, 2017, 426: 206-216. |
55 | Chen F, Zhou W J, Yao H F, et al. Self-assembly of NiO nanoparticles in lignin-derived mesoporous carbons for supercapacitor applications[J]. Green Chemistry, 2013, 15(11): 3057-3063. |
56 | Gómez-Avilés A, Peñas-Garzón M, Bedia J, et al. C-modified TiO2 using lignin as carbon precursor for the solar photocatalytic degradation of acetaminophen[J]. Chemical Engineering Journal, 2019, 358: 1574-1582. |
57 | Liu B, Khare A, Aydil E S. TiO2-B/anatase core-shell heterojunction nanowires for photocatalysis[J]. ACS Applied Materials & Interfaces, 2011, 3(11): 4444-4450. |
58 | Su Y, Yang Y, Zhang H, et al. Enhanced photodegradation of methyl orange with TiO₂ nanoparticles using a triboelectric nanogenerator[J]. Nanotechnology, 2013, 24(29): 295401. |
59 | Han C, Chen Z, Zhang N, et al. Hierarchically CdS decorated 1D ZnO nanorods-2D graphene hybrids: low temperature synthesis and enhanced photocatalytic performance[J]. Advanced Functional Materials, 2015, 25(2): 221-229. |
60 | Srisasiwimon N, Chuangchote S, Laosiripojana N, et al. TiO2/lignin-based carbon composited photocatalysts for enhanced photocatalytic conversion of lignin to high value chemicals[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 13968-13976. |
61 | Chen X Y, Kuo D H, Lu D F, et al. Synthesis and photocatalytic activity of mesoporous TiO2 nanoparticle using biological renewable resource of un-modified lignin as a template[J]. Microporous and Mesoporous Materials, 2016, 223: 145-151. |
62 | Lai C L, Kolla P, Zhao Y, et al. Lignin-derived electrospun carbon nanofiber mats with supercritically deposited Ag nanoparticles for oxygen reduction reaction in alkaline fuel cells[J]. Electrochimica Acta, 2014, 130: 431-438. |
63 | Peng X W, Zhang L, Chen Z X, et al. Hierarchically porous carbon plates derived from wood as bifunctional ORR/OER electrodes[J]. Advanced Materials, 2019, 31(16): 1900341. |
64 | García-Mateos F J, Cordero-Lanzac T, Berenguer R, et al. Lignin-derived Pt supported carbon (submicron)fiber electrocatalysts for alcohol electro-oxidation[J]. Applied Catalysis B: Environmental, 2017, 211: 18-30. |
65 | Zhou H, Hong S, Zhang H, et al. Toward biomass-based single-atom catalysts and plastics: highly active single-atom Co on N-doped carbon for oxidative esterification of primary alcohols[J]. Applied Catalysis B: Environmental, 2019, 256: 117767. |
66 | Qin H F, Kang S F, Wang Y G, et al. Lignin-based fabrication of Co@C core-shell nanoparticles as efficient catalyst for selective Fischer-Tropsch synthesis of C5+ compounds[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(3): 1240-1247. |
67 | Qin H F, Zhou Y, Bai J R, et al. Lignin-derived thin-walled graphitic carbon-encapsulated iron nanoparticles: growth, characterization, and applications[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(2): 1917-1923. |
68 | Qin H F, Jian R H, Bai J R, et al. Influence of molecular weight on structure and catalytic characteristics of ordered mesoporous carbon derived from lignin[J]. ACS Omega, 2018, 3(1): 1350-1356. |
69 | Bedia J, Rosas J M, Rodríguez-Mirasol J, et al. Pd supported on mesoporous activated carbons with high oxidation resistance as catalysts for toluene oxidation[J]. Applied Catalysis B: Environmental, 2010, 94(1/2): 8-18. |
70 | Martin-Martinez M, Barreiro M F F, Silva A M T, et al. Lignin-based activated carbons as metal-free catalysts for the oxidative degradation of 4-nitrophenol in aqueous solution[J]. Applied Catalysis B: Environmental, 2017, 219: 372-378. |
[1] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[2] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[3] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[4] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[5] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[6] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[7] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[8] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[9] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[10] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[11] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[12] | 吴文涛, 褚良永, 张玲洁, 谭伟民, 沈丽明, 暴宁钟. 腰果酚生物基自愈合微胶囊的高效制备工艺研究[J]. 化工学报, 2023, 74(7): 3103-3115. |
[13] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[14] | 王志龙, 杨烨, 赵真真, 田涛, 赵桐, 崔亚辉. 搅拌时间和混合顺序对锂离子电池正极浆料分散特性的影响[J]. 化工学报, 2023, 74(7): 3127-3138. |
[15] | 周继鹏, 何文军, 李涛. 异形催化剂上乙烯催化氧化失活动力学反应工程计算[J]. 化工学报, 2023, 74(6): 2416-2426. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1021
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 914
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||