化工学报 ›› 2020, Vol. 71 ›› Issue (7): 3000-3008.DOI: 10.11949/0438-1157.20191354
收稿日期:
2019-11-08
修回日期:
2020-04-06
出版日期:
2020-07-05
发布日期:
2020-07-05
通讯作者:
张红
作者简介:
张红(1979—),女,博士,讲师,基金资助:
Received:
2019-11-08
Revised:
2020-04-06
Online:
2020-07-05
Published:
2020-07-05
Contact:
Hong ZHANG
摘要:
采用量子化学的密度泛函理论计算,提出并研究了金属有机化学气相沉积(MOCVD)气相过程中p型掺杂剂Cp2Mg的反应机理。特别判断了不同温度下各反应进行的可能性。发现Cp2Mg主要有两条相互竞争的反应路径,加合路径和氢解路径。对于加合路径,在293~573 K的温度范围内,会形成络合物Cp2Mg∶NH3或Cp2Mg∶(NH3)2。对于氢解路径,气相中的H自由基是一把“双刃剑”。一方面H自由基对Cp2Mg的分解有积极的辅助作用,明显降低了Cp2Mg的分解温度;另一方面由于钝化作用会形成Mg-H气相络合物,影响p型掺杂效果。
中图分类号:
张红, 唐留. p型掺杂剂Cp2Mg在MOCVD气相中的反应机理研究[J]. 化工学报, 2020, 71(7): 3000-3008.
Hong ZHANG, Liu TANG. Study on reaction mechanism of p-type dopant Cp2Mg in MOCVD gas phase[J]. CIESC Journal, 2020, 71(7): 3000-3008.
图1 Cp2Mg在MOCVD气相过程中的化学反应路径示意图,主要分为加合路径(红色箭头所示)和氢解路径(蓝色箭头所示),其中虚线表示理论上不可能实现的反应
Fig.1 Schematic diagram of the chemical reaction pathway of Cp2Mg in the MOCVD gas-phase process, which is mainly composed of the adduct reaction path (shown by the red arrow) and the hydrogenolysis reaction path (shown by the blue arrow), where the dotted line indicates the theoretically impossible reactions
Cp2Mg | |||||
---|---|---|---|---|---|
Cp-Mg-Cp | Mg-Cp/ ? | Mg-C/ ? | C—C/ ? | 方法 | 文献 |
180.0° | 2.068 | 2.366 | 1.424 | B3LYP/6-31G(d) | 本文 |
— | 2.008 | 2.339 | 1.423 | El-diff | [ |
— | 1.977 | 2.304 | 1.390 | X-ray | [ |
— | 2.031 | 2.361 | 1.416 | B3LYP/6-31 | [ |
178.7° | 2.030 | — | — | B3LYP/6-31G(d) | [ |
Cp2Mg∶NH3 | |||||
Cp(1)-Mg-Cp(2) | Mg-Cp(1)/Cp(2) / ? | Mg-N/ ? | 方法 | 文献 | |
155.3° | 2.118/2.561 | 2.149 | B3LYP/6-31G(d) | 本文 | |
157.3° | 2.095/2.565 | 2.149 | B3LYP/6-31G(d) | [ | |
Cp2Mg∶(NH3)2 | |||||
Cp(1)-Mg-Cp(2) | Mg-Cp(1)/Cp(2) / ? | N(1)-Mg-N(2) / ? | Mg-N(1)/N(2) / ? | 方法 | 文献 |
143.8° | 2.821/2.102 | 93.0° | 2.171/2.210 | B3LYP/6-31G(d) | 本文 |
144.1° | 2.789/2.175 | 92.9° | 2.170/2.210 | B3LYP/6-31G(d) | [ |
表1 主要物质的优化键长和键角
Table 1 Optimized bond lengths and angles of the main species
Cp2Mg | |||||
---|---|---|---|---|---|
Cp-Mg-Cp | Mg-Cp/ ? | Mg-C/ ? | C—C/ ? | 方法 | 文献 |
180.0° | 2.068 | 2.366 | 1.424 | B3LYP/6-31G(d) | 本文 |
— | 2.008 | 2.339 | 1.423 | El-diff | [ |
— | 1.977 | 2.304 | 1.390 | X-ray | [ |
— | 2.031 | 2.361 | 1.416 | B3LYP/6-31 | [ |
178.7° | 2.030 | — | — | B3LYP/6-31G(d) | [ |
Cp2Mg∶NH3 | |||||
Cp(1)-Mg-Cp(2) | Mg-Cp(1)/Cp(2) / ? | Mg-N/ ? | 方法 | 文献 | |
155.3° | 2.118/2.561 | 2.149 | B3LYP/6-31G(d) | 本文 | |
157.3° | 2.095/2.565 | 2.149 | B3LYP/6-31G(d) | [ | |
Cp2Mg∶(NH3)2 | |||||
Cp(1)-Mg-Cp(2) | Mg-Cp(1)/Cp(2) / ? | N(1)-Mg-N(2) / ? | Mg-N(1)/N(2) / ? | 方法 | 文献 |
143.8° | 2.821/2.102 | 93.0° | 2.171/2.210 | B3LYP/6-31G(d) | 本文 |
144.1° | 2.789/2.175 | 92.9° | 2.170/2.210 | B3LYP/6-31G(d) | [ |
图3 不同温度下(T =293.15 ~1473.15 K)加合反应(G1和G2)的Gibbs自由能差(ΔG)
Fig.3 Changes of Gibbs free energy (ΔG) of adduct reactions (G1 and G2) at different temperatures (T =293.15—1473.15 K)
温度/K | G /(kJ/mol) | |||
---|---|---|---|---|
Cp2Mg | Cp2MgH | CpMgH | MgH | |
293.15 | 0 | 7.38 | 0 | 257.45 |
573.15 | 0 | 21.30 | 0 | 208.76 |
873.15 | 0 | 35.04 | 0 | 157.15 |
1273.15 | 0 | 51.88 | 0 | 89.66 |
1473.15 | 0 | 59.75 | 0 | 56.40 |
表2 不同温度下的相对Gibbs自由能
Table 2 Calculated relative Gibbs free energy at different temperatures
温度/K | G /(kJ/mol) | |||
---|---|---|---|---|
Cp2Mg | Cp2MgH | CpMgH | MgH | |
293.15 | 0 | 7.38 | 0 | 257.45 |
573.15 | 0 | 21.30 | 0 | 208.76 |
873.15 | 0 | 35.04 | 0 | 157.15 |
1273.15 | 0 | 51.88 | 0 | 89.66 |
1473.15 | 0 | 59.75 | 0 | 56.40 |
图5 不同温度下(T =293.15 ~1473.15 K)氢解路径(G3~G8)的Gibbs自由能差(ΔG)
Fig.5 Changes of Gibbs free energy (ΔG) of hydrogenolysis reactions (G3—G8) at different temperatures (T =293.15—1473.15 K)
图6 不同温度下(T =293.15~1473.15 K)氢解路径(G9~G14)的Gibbs自由能差(ΔG)
Fig.6 Changes of Gibbs free energy (ΔG) of hydrogenolysis reactions (G9—G14) at different temperatures (T =293.15—1473.15 K)
1 | Safvi S A, Redwing J M, Tischler M A, et al. GaN growth by metallorganic vapor phase epitaxy[J]. Journal of the Electrochemical Society, 1997, 144(5): 1789-1796. |
2 | Creighton J R, Breiland W G, Coltrin M E, et al. Gas-phase nanoparticle formation during AlGaN metalorganic vapor phase epitaxy[J]. Applied Physics Letters, 2002, 81(14): 2626-2628. |
3 | Creighton J R, Wang G T, Breiland W G, et al. Nature of the parasitic chemistry during AlGaInN OMVPE[J]. Journal of Crystal Growth, 2004, 261(2/3): 204-213. |
4 | Lundin W V, Nikolaev A E, Rozhavskaya M M, et al. Fast AlGaN growth in a whole composition range in planetary reactor[J]. Journal of Crystal Growth, 2013, 370: 7-11. |
5 | Zhao D G, Liu Z S, Zhu J J, et al. Effect of Al incorporation on the AlGaN growth by metalorganic chemical vapor deposition[J]. Applied Surface Science, 2006, 253(5): 2452-2455. |
6 | Cherns D, Sahonta S L, Liu R, et al. The generation of misfit dislocations in facet-controlled growth of AlGaN∕GaN films[J]. Applied Physics Letters, 2004, 85(21): 4923-4925. |
7 | Detchprohm T, Sano S, Mochizuki S, et al. Growth mechanism and characterization of low-dislocation-density AlGaN single crystals grown on periodically grooved substrates[J]. Physica Status Solidi (A), 2001, 188(2): 799-802. |
8 | Keller S, Denbaars S P. Metalorganic chemical vapor deposition of group Ⅲ nitrides-a discussion of critical issues[J]. Journal of Crystal Growth, 2003, 248: 479-486. |
9 | Li D B, Jiang K, Sun X J, et al. AlGaN photonics: recent advances in materials and ultraviolet devices[J]. Advances in Optics and Photonics, 2018, 10(1): 43-110. |
10 | Nam K B, Nakarmi M L, Li J, et al. Mg acceptor level in AlN probed by deep ultraviolet photoluminescence[J]. Applied Physics Letters, 2003, 83(5): 878-880. |
11 | Nakamura S, Iwasa N, Senoh M, et al. Hole compensation mechanism of p-type GaN films[J]. Japanese Journal of Applied Physics, 1992, 31(A): 1258-1266. |
12 | Götz W, Johnson N M, Walker J, et al. Activation of acceptors in Mg-doped GaN grown by metalorganic chemical vapor deposition[J]. Applied Physics Letters, 1996, 68(5): 667-669. |
13 | Wen T C, Lee S C, Lee W I, et al. Activation of p-type GaN in a pure oxygen ambient[J]. Japanese Journal of Applied Physics, 2001, 40(B): L495-L497. |
14 | Götz W, Johnson N M, Walker J, et al. Hydrogen passivation of Mg acceptors in GaN grown by metalorganic chemical vapor deposition[J]. Applied Physics Letters, 1995, 67(18): 2666-2668. |
15 | Hull B A, Mohney S E, Venugopalan H S, et al. Influence of oxygen on the activation of p-type GaN[J]. Applied Physics Letters, 2000, 76(16): 2271-2273. |
16 | Clerjaud B, Cte D, Lebkiri A, et al. Infrared spectroscopy of Mg-H local vibrational mode in GaN with polarized light[J]. Physical Review B, 2000, 61(12): 8238-8241. |
17 | Götz W, Johnson N M, Bour D P, et al. Local vibrational modes of the Mg–H acceptor complex in GaN[J]. Applied Physics Letters, 1996, 69(24): 3725-3727. |
18 | Sheu J K, Chi G C. The doping process and dopant characteristics of GaN[J]. Journal of Physics: Condensed Matter, 2002, 14(22): R657-R702. |
19 | Matlock D M, Zvanut M E, Wang H, et al. The effects of oxygen, nitrogen, and hydrogen annealing on Mg acceptors in GaN as monitored by electron paramagnetic resonance spectroscopy[J]. Journal of Electronic Materials, 2005, 34(1): 34-39. |
20 | Zvanut M E, Matlock D M, Henry R L, et al. Thermal activation of Mg-doped GaN as monitored by electron paramagnetic resonance spectroscopy[J]. Journal of Applied Physics, 2004, 95(4): 1884-1887. |
21 | Amano H, Kito M, Hiramatsu K, et al. P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI)[J]. Japanese Journal of Applied Physics, 1989, 28(Part 2): L2112-L2114. |
22 | Nakamura S, Mukai T, Senoh M, et al. Thermal annealing effects on p-type Mg-doped GaN films[J]. Japanese Journal of Applied Physics, 1992, 31(2B): L139-L142. |
23 | Tokunaga H, Ubukata A, Yano Y, et al. Effects of growth pressure on AlGaN and Mg-doped GaN grown using multiwafer metal organic vapor phase epitaxy system[J]. Journal of Crystal Growth, 2004, 272(1/2/3/4): 348-352. |
24 | Zvanut M E, Sunay U R, Dashdorj J, et al. Mg-hydrogen interaction in AlGaN alloys[J]. Proceedings of SPIE the International Society for Optical Engineering, 2012, 8262: 82620L-1-6. |
25 | Neugebauer J, van de Walle C G. Hydrogen in GaN: novel aspects of a common impurity[J]. Physical Review Letters, 1995, 75(24): 4452-4455. |
26 | Yuan C. Investigation of n- and p-type doping of GaN during epitaxial growth in a mass production scale multiwafer-rotating-disk reactor[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 1995, 13(5): 2075-2080. |
27 | Pearton S J, Lee J W, Yuan C. Minority-carrier-enhanced reactivation of hydrogen-passivated Mg in GaN[J]. Applied Physics Letters, 1996, 68(19): 2690-2692. |
28 | Haffouz S, Beaumont B, Leroux M, et al. P-doping of GaN by MOVPE[J]. MRS Internet Journal of Nitride Semiconductor Research, 1997, 2(33): 37-41. |
29 | Wang G T, Creighton J R. Complex formation between magnesocene (MgCp2) and NH3: implications for p-type doping of group Ⅲ nitrides and the Mg memory effect[J]. The Journal of Physical Chemistry A, 2004, 108(22): 4873-4877. |
30 | Moscatelli D, Cavallotti C. Theoretical investigation of the gas-phase kinetics active during the GaN MOVPE[J]. The Journal of Physical Chemistry A, 2007, 111(21): 4620-4631. |
31 | Yoshida M, Watanabe H, Uesugi F. Mass spectrometric study of Ga(CH3)3 and Ga(C2H5)3 decomposition reaction in H2 and N2[J]. Journal of the Electrochemical Society, 1985, 132(3): 677-679. |
32 | Zhang X J, Yang J C. Study on the structures and properties of CeSin (n = 1 - 8) with density functional theory[J]. Journal of Advances in Physical Chemistry, 2014, 3(4): 12-18. |
33 | Lee C T, Yang W T, Parr R G. Development of the colic-salvetti correlation-energy into a functional of the electron density[J]. Physal Review B, 1988, 37(2): 785-789. |
34 | Becke A D. Density-functional thermochemistry (Ⅲ). The role of exact exchange[J]. The Journal of Chemical Physics, 1993, 98(7): 5648-5652. |
35 | Canneaux S, Bohr F, Henon E. KiSThelP: a program to predict thermodynamic properties and rate constants from quantum chemistry results[J]. Journal of Computational Chemistry, 2013, 35(1): 82-93. |
36 | Simka H S. Application of quantum chemistry calculations in modeling chemical vapor deposition processes[D]. Boston: MIT, 1998. |
37 | Haaland A, Lusztyk J, Brunvoll J, et al. On the molecular structure of dicyclopentadienylmagnesium[J]. Journal of Organometallic Chemistry, 1975, 85(3): 279-285. |
38 | Andersen R A, Boncella J M, Burns C J, et al. The molecular structures of bis(pentamethylcyclopentadienyl)-calcium and-ytterbium in the gas phase: two bent metallocenes[J]. Journal of Organometallic Chemistry, 1986, 312(3): C49-C52. |
39 | Blom R, Faegri K, Volden H V. Molecular structures of alkaline earth-metal metallocenes: electron diffraction and ab initio investigations[J]. Organometallics, 1990, 9(2): 372-379. |
40 | Bünder W, Weiss E. Verfeinerung der kristallstruktur von dicyclopentadienylkobalt, (η5-C5H5)2Co[J]. Journal of Organometallic Chemistry, 1975, 92(1): 65-68. |
41 | Jr Faegri K, Almlöf J, Lüth H P. The geometry and bonding of magnesocene. An ab-initio MO-LCAO investigation[J]. Journal of Organometallic Chemistry, 1983, 249(2): 303-313. |
[1] | 何晓崐, 刘锐, 薛园, 左然. MOCVD生长AlN单晶薄膜的气相和表面化学反应综述[J]. 化工学报, 2023, 74(7): 2800-2813. |
[2] | 李晨曦, 刘永峰, 张璐, 刘海峰, 宋金瓯, 何旭. O2/CO2氛围下正庚烷的燃烧机理研究[J]. 化工学报, 2023, 74(5): 2157-2169. |
[3] | 杜峰, 尹思琦, 罗辉, 邓文安, 李传, 黄振薇, 王文静. H2在Mo x S y 团簇上吸附解离的尺寸效应研究[J]. 化工学报, 2022, 73(9): 3895-3903. |
[4] | 俞夏琪, 冯格, 赵金燕, 李嘉远, 邓声威, 郑靖楠, 李雯雯, 王亚秋, 沈榄, 刘旭, 徐威威, 王建国, 王式彬, 姚子豪, 毛成立. 基体(TDI-TMP-T313)与氧化剂(AP)相互作用的第一性原理研究[J]. 化工学报, 2022, 73(8): 3511-3517. |
[5] | 刘晓涯, 王金超, 刘莹, 马敬环. 水合肼制氢纳米催化剂改性制备及机理研究进展[J]. 化工学报, 2022, 73(7): 2819-2834. |
[6] | 赵继昊, 唐伟强, 徐小飞, 赵双良, 贺炅皓. 高分子复合材料中键合剂在不同纳米填料表面的吸附能计算[J]. 化工学报, 2022, 73(7): 3174-3181. |
[7] | 罗小松, 黄金保, 周梅, 牟鑫, 徐伟伟, 吴雷. 对苯二甲酸丁二醇酯二聚体水/醇/氨解机理的理论研究[J]. 化工学报, 2022, 73(11): 4859-4871. |
[8] | 朱先会, 王甫, 夏杰成, 袁金良. 功能型离子液体协同吸收NH3和CO2的密度泛函理论研究[J]. 化工学报, 2022, 73(10): 4324-4334. |
[9] | 龚翔, 李林森, 姜召. PdCo/SiO2双金属催化剂用于杂环储氢载体的高效脱氢[J]. 化工学报, 2022, 73(10): 4448-4460. |
[10] | 马生贵, 田博文, 周雨薇, 陈琳, 江霞, 高涛. 氮掺杂Stone-Wales缺陷石墨烯吸附H2S的密度泛函理论研究[J]. 化工学报, 2021, 72(9): 4496-4503. |
[11] | 叶凯, 刘香华, 姜月, 于颖, 赵亚飞, 庄烨, 郑进保, 陈秉辉. 低温等离子体协同CeO2/13X催化降解甲苯[J]. 化工学报, 2021, 72(7): 3706-3715. |
[12] | 梁苏卓成, 姬国勋, 孙新利, 王波, 张仕通, 代星. 硅杂原子提升冠醚对锂离子络合能力的机理理论研究[J]. 化工学报, 2021, 72(6): 3149-3159. |
[13] | 朱倩倩, 靳海波, 郭晓燕, 何广湘, 马磊, 张荣月, 谷庆阳, 杨索和. H2O2/乙腈体系下MgO催化环己酮Baeyer-Villiger绿色氧化合成ε-己内酯的研究[J]. 化工学报, 2021, 72(5): 2638-2646. |
[14] | 王琴, 徐会金, 韩兴超, 赵长颖. MgO/Mg(OH)2热化学储热反应的第一性原理研究[J]. 化工学报, 2021, 72(3): 1242-1252. |
[15] | 张芳芳, 韩敏, 赵娟, 凌丽霞, 章日光, 王宝俊. 单空缺石墨烯负载的Pd单原子催化剂上NO还原的密度泛函理论研究[J]. 化工学报, 2021, 72(3): 1382-1391. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 689
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 570
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||