1 |
卢涛, 关丹, 胡修玉, 等 . 我国生物发酵产业发展现状及发展趋势[J]. 工业微生物, 2015, (3): 62-66.
|
|
Lu T , Guan D , Hu X Y , et al . Development status and trends of bio-fermentation industry in China[J]. Industrial Microbiology, 2015, (3): 62-66.
|
2 |
张嗣良 . 发酵工程技术发展现状与趋势[J]. 生物产业技术, 2011, (1): 25-32.
|
|
Zhang S L . Development status and trend of fermentation engineering technology[J]. Biotechnology & Business, 2011, (1): 25-32.
|
3 |
Vanichsriratana W . Optimal control of fed-batch fermentation processes[D]. London:University of Westminster, 1996.
|
4 |
Weber R , Brosilow C . The use of secondary measurements to improve control[J]. AIChE Journal, 1972, 18(3): 614-623.
|
5 |
Joseph B , Brosilow C B . Inferential control of processes(Ⅰ): Steady state analysis and design[J]. AIChE Journal, 2010, 24(3): 485-492.
|
6 |
Joseph B , Brosilow C . Inferential control of processes(3): Construction of optimal and suboptimal dynamic estimators[J]. AIChE Journal, 1978, 24(3): 500-509.
|
7 |
Tham M T , Montague G A , Morris A J , et al . Soft sensors for process estimation and inferential control[J]. Journal of Process Control, 1991, 1(1): 3-14.
|
8 |
刘毅, 王海清, 李平 . 关键核网络及其在发酵过程在线建模中的应用[J]. 化工学报, 2008, 59(5): 1194-1199.
|
|
Liu Y , Wang H Q , Li P . Key kernel network and its application to online modeling for fermentation processes[J]. Journal of Chemical Industry and Engineering(China), 2008, 59(5): 1194-1199.
|
9 |
Kadlec P , Grbic R , Gabrys B . Review of adaptation mechanisms for data-driven soft sensors[J]. Computers & Chemical Engineering, 2011, 35(1): 1-24.
|
10 |
Kaneko H , Funatsu K . Development of soft sensor models based on time difference of process variables with accounting for nonlinear relationship[J]. Industrial & Engineering Chemistry Research, 2011, 50(18): 10643-10651.
|
11 |
Zhao Y . Studies on modeling and control of continuous biotechnical processes[D]. Norway: Norwegian University of Science and Technology, 1996.
|
12 |
Trelea I C , Titica M , Landaud S , et al . Predictive modelling of brewing fermentation: from knowledge-based to black-box models[J]. Mathematics and Computers in Simulation, 2001, 56(4/5): 405-424.
|
13 |
房慧, 孙玉坤, 嵇小辅 . 青霉素发酵过程的粒子群模糊神经网络软测量[J]. 自动化仪表, 2011, 32(5): 46-48.
|
|
Fang H , Sun Y K , Ji X F . Soft sensing based on particle swarm fuzzy neural network for penicillin fermentation process[J]. Process Automation Instrumentation, 2011, 32(5): 46-48.
|
14 |
杨强大, 侯新宇 . 诺西肽发酵过程中的分阶段软测量建模[J]. 化工学报, 2011, 62(6): 1612-1619.
|
|
Yang Q D , Hou X Y . Staged soft-sensor modeling for nosiheptide fermentation process[J]. CIESC Journal, 2011, 62(6): 1612-1619.
|
15 |
桑海峰, 王福利, 何大阔, 等 . 基于多支持向量机的诺西肽发酵中菌体浓度软测量[J]. 系统仿真学报, 2006, 18(7): 1983-1986.
|
|
Sang H F , Wang F L , He D K , et al . Soft sensors of biomass concentration in nosiheptied fermentation process based on multiple support vector machines[J]. Journal of System Simulation, 2006, 18(7): 1983-1986.
|
16 |
刘毅, 王海清, 李平 . 用于发酵过程在线建模的自适应局部最小二乘支持向量机回归方法[J]. 化工学报, 2008, 59(8): 2052-2057.
|
|
Liu Y , Wang H Q , Li P . Adaptive local learning based least squares support vector regression with application to online modeling for fermentation processes[J]. Journal of Chemical Industry and Engineering(China), 2008, 59(8): 2052-2057.
|
17 |
Jin H , Chen X , Wang L , et al . Adaptive soft sensor development based on online ensemble Gaussian process regression for nonlinear time-varying batch processes[J]. Industrial & Engineering Chemistry Research, 2015, 54(30): 7320-7345.
|
18 |
Yu J , Chen K , Rashid M M . A Bayesian model averaging based multi-kernel Gaussian process regression framework for nonlinear state estimation and quality prediction of multiphase batch processes with transient dynamics and uncertainty[J]. Chemical Engineering Science, 2013, 93: 96-109.
|
19 |
Liu Y , Chen T , Chen J . Auto-switch Gaussian process regression-based probabilistic soft sensors for industrial multigrade processes with transitions[J]. Industrial & Engineering Chemistry Research, 2015, 54(18): 5037-5047.
|
20 |
Mei C L , Yang M , Shu D X , et al . Soft sensor based on Gaussian process regression and its application in erythromycin fermentation process[J]. Chemical Industry & Chemical Engineering Quarterly, 2016, 22(2): 127-135.
|
21 |
Zheng R J , Pan F . Soft sensor modeling of product concentration in glutamate fermentation using Gaussian process regression[J]. American Journal of Biochemistry and Biotechnology, 2016, 12(3): 179-187.
|
22 |
Jin H P , Chen X G , Yang J W , et al . Hybrid intelligent control of substrate feeding for industrial fed-batch chlortetracyclline fermentation process[J]. ISA Transactions, 2014, 53: 1822-1837.
|
23 |
康立宏, 姜帆 . 变温培养对青霉素发酵的影响[J]. 黑龙江医药, 2000, 13(5): 269-270.
|
|
Kang L H , Jiang F . The influence to penicillin fermentation by changing culture temperatures[J]. Heilongjiang Medical Journal, 2000, 13(5): 269-270.
|
24 |
Rasmussen C E , Williams C K I . Gaussian Processes for Machine Learning[M]. Cambridge: MIT Press, 2005: 52.
|
25 |
Rasmussen C E . Gaussian processes in machine learning[C]// Summer School on Machine Learning. 2003: 63-71.
|
26 |
Kong D D , Chen Y J , Li N . Gaussian process regression for tool prediction[J]. MechSystand Signal Processing, 2018, 104: 556-574.
|
27 |
范雪莉, 冯海泓, 原猛 . 基于互信息的主成分分析特征选择算法[J]. 控制与决策, 2013, 28(6): 915-919.
|
|
Fan X L , Feng H H , Yuan M . PCA based on mutual information foe feature selection[J]. Control and Decision, 2013, 28(6): 915-919.
|
28 |
Shannon C E . Communication theory of secrecy systems[J]. The Bell System Technical Journal, 2014, 28(4): 656-715.
|
29 |
Kraskov A , Stgbauer H , Grassberger P . Estimating mutual information[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2004, 696(Pt 2): 066138.
|
30 |
Undey C , Tatara E , Cinar A . Intelligent real-time performance monitoring and quality prediction for batch/fed-batch cultivations[J]. Journal of Biotechnology, 2004, 108(1): 61-77.
|