1 |
朱群雄, 张晓晗, 顾祥柏, 等. 基于特征提取的函数连接神经网络研究及其化工过程建模应用[J]. 化工学报, 2018, 69(3): 907-912.
|
|
Zhu Q X, Zhang X H, Gu X B, et al. Research and application of feature extraction derived functional link neural network[J]. CIESC Journal, 2018, 69(3): 907-912.
|
2 |
Binois M, Gramacy R B, Ludkovski M. Practical heteroscedastic Gaussian process modeling for large simulation experiments[J]. Journal of Computational and Graphical Statistics, 2018, 27(4): 808-821.
|
3 |
Li W, Zhao C, Gao F. Linearity evaluation and variable subset partition based hierarchical process modeling and monitoring[J]. IEEE Transactions on Industrial Electronics, 2017, 65(3): 2683-2692.
|
4 |
Wu F Y, Asada H H. Implicit and intuitive grasp posture control for wearable robotic fingers: a data-driven method using partial least squares [J]. IEEE Transactions on Robotics, 2016, 32(1): 1-11.
|
5 |
Li H D, Xu Q S, Liang Y Z. libPLS: an integrated library for partial least squares regression and linear discriminant analysis[J]. Chemometrics and Intelligent Laboratory Systems, 2018, 176: 34-43.
|
6 |
Awad M, Khanna R. Support vector regression [J]. Neural Information Processing Letters & Reviews, 2007, 11(10): 203-224.
|
7 |
Bourinet J M. Rare-event probability estimation with adaptive support vector regression surrogates[J]. Reliability Engineering & System Safety, 2016, 150: 210-221.
|
8 |
徐圆, 张伟, 张明卿, 等. 基于FEEMD-AE与反馈极限学习机组合模型预测研究与应用[J]. 化工学报, 2018, 69(3): 1064-1070.
|
|
Xu Y, Zhang W, Zhang M Q, et al. Prediction research and application of a combination model based on FEEMD-AE and feedback extreme learning machine[J]. CIESC Journal, 2018, 69(3): 1064-1070.
|
9 |
Tang J, Deng C, Huang G B. Extreme learning machine for multilayer perceptron[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 27(4): 809-821.
|
10 |
Sadeghi B H M. A BP-neural network predictor model for plastic injection molding process[J]. Journal of Materials Processing Technology, 2000, 103(3): 411-416.
|
11 |
Ren T, Liu S, Yan G, et al. Temperature prediction of the molten salt collector tube using BP neural network[J]. IET Renewable Power Generation, 2016, 10(2): 212-220.
|
12 |
Wu J, Long J, Liu M. Evolving RBF neural networks for rainfall prediction using hybrid particle swarm optimization and genetic algorithm[J]. Neurocomputing, 2015, 148: 136-142.
|
13 |
赵忠盖, 刘飞. 动态因子分析模型及其在过程监控中的应用[J]. 化工学报, 2009, 60(1): 183-186.
|
|
Zhao Z G, Liu F. Modeling using dynamic factor analysis and its application in process monitoring[J]. CIESC Journal, 2009, 60(1): 183-186.
|
14 |
Ghiassi M, Saidane H, Zimbra D K. A dynamic artificial neural network model for forecasting time series events [J]. International Journal of Forecasting, 2005, 21(2): 341-362.
|
15 |
Du X, Vasudevan R, Johnson-Roberson M. Bio-LSTM: a biomechanically inspired recurrent neural network for 3-D pedestrian pose and gait prediction [J]. IEEE Robotics and Automation Letters, 2018, 4(2): 1501-1508.
|
16 |
Zen H, Sak H. Unidirectional long short-term memory recurrent neural network with recurrent output layer for low-latency speech synthesis[C]//2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2015: 4470-4474.
|
17 |
Feng W, Wu Y, Fan Y. A new method for the prediction of network security situations based on recurrent neural network with gated recurrent unit[J]. International Journal of Intelligent Computing and Cybernetics, 2018, 11(6): 511-525.
|
18 |
Jaeger H. The “echo state” approach to analysing and training recurrent neural networks—with an erratum note[R].Bonn: German National Research Center for Information Technology GMD Technical Report, 2001.
|
19 |
Aboelmaged M G. Knowledge sharing through enterprise social network (ESN) systems: motivational drivers and their impact on employees productivity[J]. Journal of Knowledge Management, 2018, 22(2): 362-383.
|
20 |
Gillum T L, George R H, Leitmeyer J E. An autoencoder for clinical and regulatory data processing [J]. Drug Information Journal, 1995, 29(1): 107-113.
|
21 |
Kodirov E, Xiang T, Gong S. Semantic autoencoder for zero-shot learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 3174-3183.
|
22 |
Zhang Z, Song Y, Qi H. Age progression/regression by conditional adversarial autoencoder[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 5810-5818.
|
23 |
彭荻, 贺彦林, 徐圆, 等. 基于数据特征提取的AANN-ELM研究及化工应用[J]. 化工学报, 2012, 63(9): 2920-2925.
|
|
Peng D, He Y L, Xu Y, et al. Research and chemical application of data feature extraction based AANN-ELM neural network[J]. CIESC Journal, 2012, 63(9): 2920-2925.
|
24 |
才轶, 徐圆, 朱群雄, 等. 基于自联想神经网络的数据滤波功能与应用[J]. 计算机与应用化学, 2009, 26(5): 673-676.
|
|
Cai Y, Xu Y, Zhu Q X, et al. Data filtering method and application based on auto-associative neural network[J]. Computers and Applied Chemistry, 2009, 26(5): 673-676.
|
25 |
Hou X, Shen L, Sun K, et al. Deep feature consistent variational Autoencoder [C]//2017 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE, 2017: 1133-1141.
|
26 |
Yu J, Hong C, Rui Y, et al. Multitask autoencoder model for recovering human poses [J]. IEEE Transactions on Industrial Electronics, 2017, 65(6): 5060-5068.
|
27 |
Fu H, Lei P, Tao H, et al. Improved semi-supervised autoencoder for deception detection [J]. PloS ONE, 2019, 14(10): e0223361.
|
28 |
Co-Reyes J D, Liu Y X, Gupta A, et al. Self-consistent trajectory autoencoder: hierarchical reinforcement learning with trajectory embeddings [C]//Proceedings of the 35th International Conference on Machine Learning. Stockholm, Sweden, 2018.
|
29 |
Zhu Q X, Meng Q Q, He Y L. Novel multidimensional feature pattern classification method and its application to fault diagnosis [J]. Industrial & Engineering Chemistry Research, 2017, 56(31): 8906-8916.
|
30 |
Xu Y, Shen S Q, He Y L, et al. A novel hybrid method integrating ICA-PCA with relevant vector machine for multivariate process monitoring [J]. IEEE Transactions on Control Systems Technology, 2018, 27(4): 1780-1787.
|