化工学报 ›› 2019, Vol. 70 ›› Issue (12): 4898-4906.DOI: 10.11949/0438-1157.20190711
• 过程安全 • 上一篇
收稿日期:
2019-06-24
修回日期:
2019-08-20
出版日期:
2019-12-05
发布日期:
2019-12-05
通讯作者:
林伟国
作者简介:
王芳(1989—),女,博士研究生,基金资助:
Fang WANG(),Weiguo LIN(),Xinyu CHANG,Xianbo QIU
Received:
2019-06-24
Revised:
2019-08-20
Online:
2019-12-05
Published:
2019-12-05
Contact:
Weiguo LIN
摘要:
目前管道泄漏检测方法可有效检测突发泄漏,对于缓慢泄漏则存在检测灵敏度低、定位不准确等问题。基于此,提出了一种基于信号增强的缓慢泄漏检测方法。通过信号压缩(抽取及移位)克服缓慢泄漏压力信号下降平缓的缺点;根据声波信号具有波形尖锐突出、对突发泄漏敏感的优点,通过建立以压力为输入、虚拟声波为输出的声波信号变送器模型,将压力信号转换为声波信号,克服了泄漏压力信号容易被淹没在管道压力波动及背景噪声中的缺点,实现了缓慢泄漏信号的增强;利用临近插值方法重构虚拟声波信号,基于延时互相关分析实现了缓慢泄漏的准确定位。实验结果表明,该方法具有显著的信号增强效果和定位精度,实现了缓慢泄漏的准确检测。
中图分类号:
王芳, 林伟国, 常新禹, 邱宪波. 基于信号增强的缓慢泄漏检测方法[J]. 化工学报, 2019, 70(12): 4898-4906.
Fang WANG, Weiguo LIN, Xinyu CHANG, Xianbo QIU. Slow leak detection method based on signal enhancement[J]. CIESC Journal, 2019, 70(12): 4898-4906.
图8 原始压力信号、压缩后压力信号、增强后虚拟声波信号及重构后虚拟声波信号的时域波形
Fig.8 Time-domain waveforms of original pressure signal, compressed pressure signal, enhanced virtual acoustic signal and reconstructed virtual acoustic signal
管道参数 | 输水管道 | 石脑油管道 |
---|---|---|
管道总长/km | 62 | 15.511 |
管道直径/mm | 914 | 150 |
管壁厚度/mm | 23.8 | 6 |
输送量/(m3/h) | 1500~3100 | 不详 |
上游参考压力/MPa | 5 | 2.18 |
下游参考压力/MPa | 2 | 0.48 |
声波速度/(m/s) | 1323 | 1055 |
压力变送器型号/参数 | 霍尼韦尔STG74L/0.065% | 浙大中控SKGW04V5/0.065% |
声波信号变送器型号/参数 | 自主研发/参见1.2节 | |
模拟泄漏点位置(距离上游)/ km | 43.990 | 9.476 |
信号采样频率/ Hz | 100 | 50 |
表1 管道参数
Table 1 Pipeline parameters
管道参数 | 输水管道 | 石脑油管道 |
---|---|---|
管道总长/km | 62 | 15.511 |
管道直径/mm | 914 | 150 |
管壁厚度/mm | 23.8 | 6 |
输送量/(m3/h) | 1500~3100 | 不详 |
上游参考压力/MPa | 5 | 2.18 |
下游参考压力/MPa | 2 | 0.48 |
声波速度/(m/s) | 1323 | 1055 |
压力变送器型号/参数 | 霍尼韦尔STG74L/0.065% | 浙大中控SKGW04V5/0.065% |
声波信号变送器型号/参数 | 自主研发/参见1.2节 | |
模拟泄漏点位置(距离上游)/ km | 43.990 | 9.476 |
信号采样频率/ Hz | 100 | 50 |
泄漏类型 | 样本 | 插值前 | 线性插值 | 三次样条插值 | 立方插值 | 临近插值 |
---|---|---|---|---|---|---|
缓慢 | 1 | 33.621 | 43.471 | 43.471 | 43.471 | 43.655 |
2 | 34.557 | 43.223 | 43.223 | 43.223 | 43.212 | |
突发 | 3 | 8.399 | 9.665 | 9.665 | 9.665 | 9.665 |
4 | 8.367 | 9.570 | 9.570 | 9.570 | 9.570 |
表2 互相关定位方法结合插值方法的定位结果
Table 2 Location results of cross-correlation location method combined with interpolation method/km
泄漏类型 | 样本 | 插值前 | 线性插值 | 三次样条插值 | 立方插值 | 临近插值 |
---|---|---|---|---|---|---|
缓慢 | 1 | 33.621 | 43.471 | 43.471 | 43.471 | 43.655 |
2 | 34.557 | 43.223 | 43.223 | 43.223 | 43.212 | |
突发 | 3 | 8.399 | 9.665 | 9.665 | 9.665 | 9.665 |
4 | 8.367 | 9.570 | 9.570 | 9.570 | 9.570 |
检测方法 | 输水管道(缓慢) | 石脑油输送管道(突发) | ||||||
---|---|---|---|---|---|---|---|---|
漏报次数/泄漏样本总数 | 误报次数/样本总数 | 最大定位误差/km | 诊断时间/s | 漏报次数/泄漏样本总数 | 误报次数/样本总数 | 最大定位误差/km | 诊断时间/s | |
本文方法 | 0/3 | 1/14400 | 0.53 | 0.87 | 0/15 | 0/14400 | 0.094 | 0.21 |
负压波法 | 1/3 | 162/14400 | 4.05 | 1.3 | 2/15 | 72/14400 | 1.487 | 0.56 |
声波法 | 3/3 | 523/14400 | — | 0.65 | 0/15 | 0/14400 | 0.084 | 0.04 |
表3 三种泄漏检测方法的测试结果比较
Table 3 Comparison results of three leak detection methods
检测方法 | 输水管道(缓慢) | 石脑油输送管道(突发) | ||||||
---|---|---|---|---|---|---|---|---|
漏报次数/泄漏样本总数 | 误报次数/样本总数 | 最大定位误差/km | 诊断时间/s | 漏报次数/泄漏样本总数 | 误报次数/样本总数 | 最大定位误差/km | 诊断时间/s | |
本文方法 | 0/3 | 1/14400 | 0.53 | 0.87 | 0/15 | 0/14400 | 0.094 | 0.21 |
负压波法 | 1/3 | 162/14400 | 4.05 | 1.3 | 2/15 | 72/14400 | 1.487 | 0.56 |
声波法 | 3/3 | 523/14400 | — | 0.65 | 0/15 | 0/14400 | 0.084 | 0.04 |
1 | 李健, 陈世利, 黄新敬, 等. 长输油气管道泄漏监测与准实时检测技术综述[J]. 仪器仪表学报, 2016, 37(8): 1747-1760. |
Li J, Chen S L, Huang X J, et al. Review of leak monitoring and quasi real-time detection technologies for long gas & oil pipelines[J]. Chinese Journal of Scientific Instrument, 2016, 37(8): 1747-1760. | |
2 | 林伟国, 王晓东, 吴海燕, 等. 基于时域积分的泄漏声波信号增强方法[J]. 化工学报, 2016, 67(3): 797-804. |
Lin W G, Wang X D, Wu H Y, et al. Acoustic leak signal enhancement based on time-domain integration[J]. CIESC Journal, 2016, 67(3): 797-804. | |
3 | Liu C W, Li Y X, Fang L P, et al. New leak-localization approaches for gas pipelines using acoustic waves[J]. Measurement, 2019, 134: 54-65. |
4 | Zhang T T, Tan Y F, Zhang X D, et al. A novel hybrid technique for leak detection and location in straight pipelines[J]. Journal of Loss Prevention in the Process Industries, 2015, 35: 157-168. |
5 | 梁杰, 李玉星, 刘翠伟, 等. 埋地输气管道泄漏特性实验研究[J]. 化工学报, 2019, 70(4): 1635-1643. |
Liang J, Li Y X, Liu C W, et al. Experimental study on leakage characteristics of buried gas pipelines[J]. CIESC Journal, 2019, 70(4): 1635-1643. | |
6 | Sun J D, Xiao Q Y, Wen J T, et al. Natural gas pipeline small leak feature extraction and recognition based on LMD envelope spectrum entropy and SVM[J]. Measurement, 2014, 55: 434-443. |
7 | Arifin B M S, Li Z K, Shah S L, et al. A novel data-driven leak detection and localization algorithm using the Kantorovich distance[J]. Computers & Chemical Engineering, 2018, 108: 300-313. |
8 | Sun L, Chang N. Integrated-signal-based leak location method for liquid pipelines[J]. Journal of Loss Prevention in the Process Industries, 2014, 32: 311-318. |
9 | 孟令雅, 付俊涛, 李玉星, 等. 输气管道泄漏音波信号传播特性及预测模型[J]. 中国石油大学学报(自然科学版), 2013, 37(2): 124-129. |
Meng L Y, Fu J T, Li Y X, et al. Propagating characteristics of acoustic leak signal in natural gas pipeline and establishment of prediction model[J]. Journal of China University of Petroleum(Edition of Natural Science), 2013, 37 (2): 124-129. | |
10 | 刘翠伟, 敬华飞, 方丽萍, 等. 输气管道泄漏声波衰减模型的理论研究[J]. 振动与冲击, 2018, 37(20): 114-119. |
Liu C W, Jing H F, Fang L P, et al. A theoretical study on the attenuation model of leak acoustic waves for natural gas pipelines[J]. Journal of Vibration and Shock, 2018, 37(20): 114-119. | |
11 | Muggleton J M, Kalkowski M, Gao Y, et al. A theoretical study of the fundamental torsional wave in buried pipes for pipeline condition assessment and monitoring[J]. Journal of Sound and Vibration, 2015, 374: 155-171. |
12 | 赵利强, 王建林, 于涛, 等. 基于二代小波变换和多级假设检验的输油管道缓泄漏检测方法[J]. 石油学报, 2012, 33(5): 898-903. |
Zhao L Q, Wang J L, Yu T, et al. A detection method for slow leak of oil pipelines based on second generation wavelet transform and multistage hypothesis test[J]. Acta Petrolei Sinica, 2012, 33(5): 898-903. | |
13 | Liu J H, Zang D, Liu C, et al. A leak detection method for oil pipeline based on Markov feature and two-stage decision scheme[J]. Measurement, 2019, 138: 433-445. |
14 | Hu J Q, Zhang L B, Liang W. Detection of small leakage from long transportation pipeline with complex noise[J]. Journal of Loss Prevention in the Process Industries, 2011, 24(4): 449-457. |
15 | Ostapkowicz P. Leak detection from liquid transmission pipelines using improved pressure wave technique[J]. Eksploatacja i Niezawodnosc - Maintenance and Reliability, 2014, 16 (1): 9-16. |
16 | Abdulshaheed A, Mustapha F, Ghavamian A. A pressure-based method for monitoring leaks in a pipe distribution system: a review[J]. Renewable and Sustainable Energy Reviews, 2017, 69: 902-911. |
17 | Ostapkowicz P. Leak detection in liquid transmission pipelines using simplified pressure analysis techniques employing a minimum of standard and non-standard measuring devices[J]. Engineering Structures, 2016, 113: 194-205. |
18 | Zhang Y, Chen S L, Li J, et al. Leak detection monitoring system of long distance oil pipeline based on dynamic pressure transmitter[J]. Measurement, 2014, 49: 382-389. |
19 | 刘翠伟, 李雪洁, 李玉星, 等. 基于音波法的输气管道泄漏检测与定位[J]. 化工学报, 2014, 65(11): 4633-4642. |
Liu C W, Li X J, Li Y X, et al. Leak detection and location for natural gas pipelines based on acoustic waves[J]. CIESC Journal, 2014, 65(11): 4633-4642. | |
20 | Wang F, Lin W G, He Z Y, et al. Adaptive abnormal signal extraction based on iterative computations[C]//28th Chinese Control and Decision Conference. New York: IEEE, 2016: 6994-6999. |
21 | Wang F, Lin W G, Liu Z, et al. Pipeline leak detection by using Time-Domain statistical features[J]. IEEE Sensors Journal, 2017, 17(19): 6431-6442. |
22 | Norazlina S, Norsarahaida A, Baba G A. Leak detection of non-isothermal transient flow of hydrogen-natural gas mixture[J]. Journal of Loss Prevention in the Process Industries, 2017, 48: 244-253. |
23 | Qu Z G, Feng H, Zeng Z M, et al. A SVM-based pipeline leakage detection and pre-warning system[J]. Measurement, 2010, 43: 513-519. |
24 | Jin H, Zhang L B, Liang W, et al. Integrated leakage detection and localization model for gas pipelines based on the acoustic wave method [J]. Journal of Loss Prevention in the Process Industries, 2014, 27: 74-88. |
25 | Ogino T, Kawaguchi T, Yamashita S, et al. Measurement deviations for shear wave velocity of bender element test using time domain, cross-correlation, and frequency domain approaches[J]. Soils and Foundations, 2015, 55(2): 329-342. |
26 | Fabrício C A, Michael J B, Phillip F J, et al. The effects of resonances on time delay estimation for water leak detection in plastic pipes[J]. Journal of Sound and Vibration, 2018, 420: 315-329. |
27 | Dunlop G R. A rapid computational method for improvements to nearest neighbour interpolation[J]. Computers & Mathematics with Applications, 1980, 6(3): 349-353. |
28 | Jiang J J, Wang X Q, Duan F J, et al. An efficient algorithm for WBAF estimation based on linear interpolation and its estimation error[J]. Applied Acoustics, 2018, 142: 44-52. |
29 | 吴微, 师佳, 周华, 等. 基于样条插值模型的间歇精馏模拟与预测控制[J]. 化工学报, 2012, 63(4): 1124-1131. |
Wu W, Shi J, Zhou H, et al. Simulation and predictive control based on spline interpolation model of batch distillation[J]. CIESC Journal, 2012, 63(4): 1124-1131. | |
30 | Shang S H. Downscaling crop water sensitivity index using monotone piecewise cubic interpolation[J]. Pedosphere, 2013, 23(5): 662-667. |
[1] | 曹跃, 余冲, 李智, 杨明磊. 工业数据驱动的加氢裂化装置多工况切换过渡状态检测[J]. 化工学报, 2023, 74(9): 3841-3854. |
[2] | 仪显亨, 周骛, 蔡小舒, 蔡天意. 光纤后向动态光散射测量纳米颗粒的浓度适用范围研究[J]. 化工学报, 2023, 74(8): 3320-3328. |
[3] | 林典, 江国梅, 徐秀彬, 赵波, 刘冬梅, 吴旭. 硅基类液防原油黏附涂层的研制及其减阻性能研究[J]. 化工学报, 2023, 74(8): 3438-3445. |
[4] | 刘爽, 张霖宙, 许志明, 赵锁奇. 渣油及其组分黏度的分子层次组成关联研究[J]. 化工学报, 2023, 74(8): 3226-3241. |
[5] | 尹刚, 李伊惠, 何飞, 曹文琦, 王民, 颜非亚, 向禹, 卢剑, 罗斌, 卢润廷. 基于KPCA和SVM的铝电解槽漏槽事故预警方法[J]. 化工学报, 2023, 74(8): 3419-3428. |
[6] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[7] | 高学金, 姚玉卓, 韩华云, 齐咏生. 基于注意力动态卷积自编码器的发酵过程故障监测[J]. 化工学报, 2023, 74(6): 2503-2521. |
[8] | 周继鹏, 何文军, 李涛. 异形催化剂上乙烯催化氧化失活动力学反应工程计算[J]. 化工学报, 2023, 74(6): 2416-2426. |
[9] | 郑书闽, 郭鹏程, 颜建国, 王帅, 李文博, 周淇. 微小通道内过冷流动沸腾阻力特性实验及预测研究[J]. 化工学报, 2023, 74(4): 1549-1560. |
[10] | 顾学荣, 刘硕士, 杨思宇. 基于并行EGO和代理模型辅助的多参数优化方法研究[J]. 化工学报, 2023, 74(3): 1205-1215. |
[11] | 张生安, 刘桂莲. 高效太阳能电解水制氢系统及其性能的多目标优化[J]. 化工学报, 2023, 74(3): 1260-1274. |
[12] | 张家庆, 蒋榕培, 史伟康, 武博翔, 杨超, 刘朝晖. 煤基/石油基火箭煤油高参数黏温特性与组分特性研究[J]. 化工学报, 2023, 74(2): 653-665. |
[13] | 陈家辉, 杨鑫泽, 陈顾中, 宋震, 漆志文. 以离子液体密度为例的分子性质预测模型建模方法探讨[J]. 化工学报, 2023, 74(2): 630-641. |
[14] | 袁海鸥, 叶方俊, 张硕, 罗祎青, 袁希钢. 考虑中间换热器的能量集成精馏序列合成[J]. 化工学报, 2023, 74(2): 796-806. |
[15] | 黄宽, 马永德, 蔡镇平, 曹彦宁, 江莉龙. 油脂催化加氢转化制备第二代生物柴油研究进展[J]. 化工学报, 2023, 74(1): 380-396. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||