化工学报 ›› 2023, Vol. 74 ›› Issue (8): 3226-3241.DOI: 10.11949/0438-1157.20230431
收稿日期:
2023-05-04
修回日期:
2023-08-11
出版日期:
2023-08-25
发布日期:
2023-10-18
通讯作者:
赵锁奇
作者简介:
刘爽(1994—),女,博士研究生,18810062037@163.com
基金资助:
Shuang LIU(), Linzhou ZHANG, Zhiming XU, Suoqi ZHAO()
Received:
2023-05-04
Revised:
2023-08-11
Online:
2023-08-25
Published:
2023-10-18
Contact:
Suoqi ZHAO
摘要:
渣油由于自身的黏度大和流动性差制约其加工和运输,所以渣油高黏度的来源成为探究的关键。本研究把不同渣油分离成SARA(饱和分、芳香分、胶质、沥青质)四个组分并进行黏度和分子组成的关联研究。研究结果表明:从组分含量来看,渣油黏度影响的灰色关联顺序为:沥青质>饱和分>胶质>芳香分。饱和分黏度远小于渣油的黏度,说明饱和分是渣油体系主要的稀释剂。从组分分子层次来看,发现饱和分的黏度贡献主要来源于环烷烃的贡献,环数越多对饱和分黏度影响越大。芳香分的黏度贡献主要来源于N1O1类和N1类化合物的分布。除了金属元素Ni及Fe元素,胶质黏度很大程度受O1类化合物的影响。
中图分类号:
刘爽, 张霖宙, 许志明, 赵锁奇. 渣油及其组分黏度的分子层次组成关联研究[J]. 化工学报, 2023, 74(8): 3226-3241.
Shuang LIU, Linzhou ZHANG, Zhiming XU, Suoqi ZHAO. Study on molecular level composition correlation of viscosity of residual oil and its components[J]. CIESC Journal, 2023, 74(8): 3226-3241.
标准 黏度液 | 芯片 | 标准动力黏度(20℃)/(mPa·s) | 微流体动力黏度(20℃)/(mPa·s) | 误差/% |
---|---|---|---|---|
GBW13601 | A02 | 1.5757 | 1.5754 | 0.0190 |
GBW13609 | C05 | 1070.3 | 1062 | 0.7755 |
GBW13614 | C30 | 46237 | 46258 | 0.0450 |
表1 标准黏度液校准结果
Table 1 Calibration results of standard viscosity liquid
标准 黏度液 | 芯片 | 标准动力黏度(20℃)/(mPa·s) | 微流体动力黏度(20℃)/(mPa·s) | 误差/% |
---|---|---|---|---|
GBW13601 | A02 | 1.5757 | 1.5754 | 0.0190 |
GBW13609 | C05 | 1070.3 | 1062 | 0.7755 |
GBW13614 | C30 | 46237 | 46258 | 0.0450 |
样品(40℃) | 剪切 速率/s-1 | 微流体黏度计/(mPa·s) | 旋转黏度计/(mPa·s) | 相对 误差/% |
---|---|---|---|---|
红浅-hD111 | 156 | 1115 | 1140 | 2.24 |
采油三区-96374 | 156 | 3756 | 3743 | 0.26 |
采油三区-96846 | 156 | 2721 | 2787 | 2.43 |
采油三区-96842 | 156 | 4363 | 4397 | 0.78 |
采油三区-96826 | 156 | 4453 | 4580 | 2.85 |
新港-94116 | 156 | 597 | 600 | 0.50 |
红浅-H253 | 156 | 4603 | 4594 | 0.19 |
九8区齐古组-采油二区 | 156 | 4274 | 4366 | 2.15 |
采油三区-96814 | 156 | 4562 | 4563 | 0.02 |
表2 C30芯片黏度测量相对误差
Table 2 Relative error of C30 chip viscosity measurement
样品(40℃) | 剪切 速率/s-1 | 微流体黏度计/(mPa·s) | 旋转黏度计/(mPa·s) | 相对 误差/% |
---|---|---|---|---|
红浅-hD111 | 156 | 1115 | 1140 | 2.24 |
采油三区-96374 | 156 | 3756 | 3743 | 0.26 |
采油三区-96846 | 156 | 2721 | 2787 | 2.43 |
采油三区-96842 | 156 | 4363 | 4397 | 0.78 |
采油三区-96826 | 156 | 4453 | 4580 | 2.85 |
新港-94116 | 156 | 597 | 600 | 0.50 |
红浅-H253 | 156 | 4603 | 4594 | 0.19 |
九8区齐古组-采油二区 | 156 | 4274 | 4366 | 2.15 |
采油三区-96814 | 156 | 4562 | 4563 | 0.02 |
胶质 | a | b | R2 | 胶质虚拟黏度/(mPa·s) |
---|---|---|---|---|
油砂沥青 | -1.9215 | 6.2827 | 0.9804 | 1.07×1034 |
轻脱油 | -1.9222 | 5.9194 | 0.9851 | 4.42×1023 |
低凝常渣 | -1.9313 | 6.3385 | 0.9860 | 4.26×1035 |
超稠油常渣 | -1.9444 | 7.2950 | 0.9745 | 3.32×1091 |
表3 拟合参数及胶质虚拟黏度
Table 3 Fitting parameters and resin virtual viscosity
胶质 | a | b | R2 | 胶质虚拟黏度/(mPa·s) |
---|---|---|---|---|
油砂沥青 | -1.9215 | 6.2827 | 0.9804 | 1.07×1034 |
轻脱油 | -1.9222 | 5.9194 | 0.9851 | 4.42×1023 |
低凝常渣 | -1.9313 | 6.3385 | 0.9860 | 4.26×1035 |
超稠油常渣 | -1.9444 | 7.2950 | 0.9745 | 3.32×1091 |
性质 | 油砂沥青 | 低凝常渣 | 超稠油常渣 | 轻脱油 |
---|---|---|---|---|
平均分子量 | 635 | 573 | 732 | 666 |
C含量/%(质量) | 83.07 | 86.90 | 86.62 | 83.52 |
H含量/%(质量) | 10.56 | 10.84 | 10.44 | 10.76 |
H/C原子比 | 1.53 | 1.50 | 1.45 | 1.55 |
饱和分收率/% | 22.6 | 33.3 | 25.4 | 13.3 |
芳香分收率/% | 40.9 | 34.5 | 35.2 | 58.7 |
胶质收率/% | 23.1 | 29.1 | 32.2 | 27.8 |
沥青质收率/% | 13.4 | 3.1 | 7.2 | 0.2 |
Ca含量/(μg/ml) | 1.640 | 3.321 | 7.209 | 2.563 |
Fe含量/(μg/m l) | 0.158 | 0.658 | 1.058 | 0.111 |
Na含量/(μg/m l) | 3.393 | 3.608 | 4.101 | 3.452 |
Ni含量/(μg/m l) | 1.154 | 0.912 | 1.365 | 0.667 |
V含量/(μg/m l) | 2.900 | 0.046 | 0.039 | 1.503 |
表4 四种油样的性质
Table 4 Properties of four oil samples
性质 | 油砂沥青 | 低凝常渣 | 超稠油常渣 | 轻脱油 |
---|---|---|---|---|
平均分子量 | 635 | 573 | 732 | 666 |
C含量/%(质量) | 83.07 | 86.90 | 86.62 | 83.52 |
H含量/%(质量) | 10.56 | 10.84 | 10.44 | 10.76 |
H/C原子比 | 1.53 | 1.50 | 1.45 | 1.55 |
饱和分收率/% | 22.6 | 33.3 | 25.4 | 13.3 |
芳香分收率/% | 40.9 | 34.5 | 35.2 | 58.7 |
胶质收率/% | 23.1 | 29.1 | 32.2 | 27.8 |
沥青质收率/% | 13.4 | 3.1 | 7.2 | 0.2 |
Ca含量/(μg/ml) | 1.640 | 3.321 | 7.209 | 2.563 |
Fe含量/(μg/m l) | 0.158 | 0.658 | 1.058 | 0.111 |
Na含量/(μg/m l) | 3.393 | 3.608 | 4.101 | 3.452 |
Ni含量/(μg/m l) | 1.154 | 0.912 | 1.365 | 0.667 |
V含量/(μg/m l) | 2.900 | 0.046 | 0.039 | 1.503 |
图2 渣油、渣油饱和分、渣油芳香分、渣油胶质、渣油沥青质黏温曲线对比
Fig.2 Viscosity temperature curve comparison of residue, residue saturate, residue aromatics, residue resin and residue asphaltene
编号 | 组分 | ξi | ri | |||
---|---|---|---|---|---|---|
油砂沥青 | 轻脱油 | 低凝常渣 | 超稠油常渣 | |||
1 | 饱和分 | 0.6596 | 0.5698 | 0.3813 | 0.8280 | 0.6097 |
2 | 芳香分 | 0.6565 | 0.7350 | 0.3592 | 0.5694 | 0.5800 |
3 | 胶质 | 0.7001 | 0.6629 | 0.3886 | 0.6698 | 0.6054 |
4 | 沥青质 | 0.4216 | 0.8594 | 0.3944 | 1.0000 | 0.6688 |
表5 渣油黏度(75℃)与四组分灰色关联分析结果
Table 5 The results of grey correlation analysis between residue viscosity(75℃) and four components
编号 | 组分 | ξi | ri | |||
---|---|---|---|---|---|---|
油砂沥青 | 轻脱油 | 低凝常渣 | 超稠油常渣 | |||
1 | 饱和分 | 0.6596 | 0.5698 | 0.3813 | 0.8280 | 0.6097 |
2 | 芳香分 | 0.6565 | 0.7350 | 0.3592 | 0.5694 | 0.5800 |
3 | 胶质 | 0.7001 | 0.6629 | 0.3886 | 0.6698 | 0.6054 |
4 | 沥青质 | 0.4216 | 0.8594 | 0.3944 | 1.0000 | 0.6688 |
参考数例 | 比较数列 | ξi | ri | |||
---|---|---|---|---|---|---|
油砂沥青饱和分 | 轻脱油饱和分 | 低凝常渣饱和分 | 超稠油常渣饱和分 | |||
μ | H/C原子比 | 0.6213 | 0.7035 | 0.7598 | 0.3959 | 0.6201 |
S含量 | 0.4385 | 0.9738 | 0.9392 | 0.4459 | 0.6994 | |
N含量 | 0.6363 | 0.7999 | 0.7672 | 0.4340 | 0.6593 | |
O含量 | 0.6905 | 0.5991 | 0.6967 | 0.3661 | 0.5881 | |
fA | 0.6862 | 1.0000 | 0.6180 | 0.4819 | 0.6965 | |
fN | 0.6216 | 0.9161 | 0.6764 | 0.4241 | 0.6595 | |
fP | 0.6221 | 0.6596 | 0.7863 | 0.3885 | 0.6141 | |
平均分子量 | 0.6781 | 0.5765 | 0.8131 | 0.3819 | 0.6123 | |
dμ/dT | H/C原子比 | 0.6218 | 0.7057 | 0.7619 | 0.3967 | 0.6215 |
S含量 | 0.4388 | 0.9776 | 0.9398 | 0.4469 | 0.7008 | |
N含量 | 0.6367 | 0.8026 | 0.7694 | 0.4350 | 0.6609 | |
O含量 | 0.6910 | 0.6008 | 0.6986 | 0.3668 | 0.5893 | |
fA | 0.6867 | 1.0000 | 0.6195 | 0.4830 | 0.6973 | |
fN | 0.6220 | 0.9195 | 0.6781 | 0.4250 | 0.6611 | |
fP | 0.6225 | 0.6616 | 0.7885 | 0.3893 | 0.6155 | |
平均分子量 | 0.6785 | 0.5780 | 0.8155 | 0.3827 | 0.6137 |
表6 饱和分μ、dμ/dT与基本性质的关联分析结果
Table 6 The results of correlation analysis between μ,dμ/dT and basic properties of saturates
参考数例 | 比较数列 | ξi | ri | |||
---|---|---|---|---|---|---|
油砂沥青饱和分 | 轻脱油饱和分 | 低凝常渣饱和分 | 超稠油常渣饱和分 | |||
μ | H/C原子比 | 0.6213 | 0.7035 | 0.7598 | 0.3959 | 0.6201 |
S含量 | 0.4385 | 0.9738 | 0.9392 | 0.4459 | 0.6994 | |
N含量 | 0.6363 | 0.7999 | 0.7672 | 0.4340 | 0.6593 | |
O含量 | 0.6905 | 0.5991 | 0.6967 | 0.3661 | 0.5881 | |
fA | 0.6862 | 1.0000 | 0.6180 | 0.4819 | 0.6965 | |
fN | 0.6216 | 0.9161 | 0.6764 | 0.4241 | 0.6595 | |
fP | 0.6221 | 0.6596 | 0.7863 | 0.3885 | 0.6141 | |
平均分子量 | 0.6781 | 0.5765 | 0.8131 | 0.3819 | 0.6123 | |
dμ/dT | H/C原子比 | 0.6218 | 0.7057 | 0.7619 | 0.3967 | 0.6215 |
S含量 | 0.4388 | 0.9776 | 0.9398 | 0.4469 | 0.7008 | |
N含量 | 0.6367 | 0.8026 | 0.7694 | 0.4350 | 0.6609 | |
O含量 | 0.6910 | 0.6008 | 0.6986 | 0.3668 | 0.5893 | |
fA | 0.6867 | 1.0000 | 0.6195 | 0.4830 | 0.6973 | |
fN | 0.6220 | 0.9195 | 0.6781 | 0.4250 | 0.6611 | |
fP | 0.6225 | 0.6616 | 0.7885 | 0.3893 | 0.6155 | |
平均分子量 | 0.6785 | 0.5780 | 0.8155 | 0.3827 | 0.6137 |
参考数列 | 比较数列 | ξi | ri | |||
---|---|---|---|---|---|---|
油砂沥青芳香分 | 轻脱油芳香分 | 低凝常渣芳香分 | 超稠油常渣芳香分 | |||
μ | H/C原子比 | 0.5646 | 0.9106 | 0.7441 | 0.4957 | 0.6788 |
S含量 | 0.3564 | 0.5940 | 0.6471 | 0.3397 | 0.4843 | |
N含量 | 0.7499 | 0.6176 | 0.5485 | 0.6504 | 0.6416 | |
O含量 | 0.4910 | 0.7367 | 0.7459 | 0.4950 | 0.6171 | |
fA | 0.5868 | 0.7401 | 0.6649 | 0.5385 | 0.6326 | |
fN | 0.5573 | 0.7926 | 0.7072 | 0.5137 | 0.6427 | |
fP | 0.5601 | 1.0000 | 0.7880 | 0.4780 | 0.7065 | |
平均分子量 | 0.5678 | 0.9162 | 0.8095 | 0.4705 | 0.6910 | |
dμ/dT | H/C原子比 | 0.9672 | 0.4773 | 0.6909 | 0.8396 | 0.7437 |
S含量 | 0.4732 | 0.8061 | 0.9118 | 0.7391 | 0.7326 | |
N含量 | 1.0000 | 0.3790 | 0.5135 | 0.5913 | 0.6209 | |
O含量 | 0.7628 | 0.4227 | 0.6925 | 0.8419 | 0.6800 | |
fA | 1.0375 | 0.4239 | 0.6194 | 0.7363 | 0.7043 | |
fN | 0.9452 | 0.4414 | 0.6576 | 0.7909 | 0.7088 | |
fP | 0.9537 | 0.5119 | 0.7303 | 0.8985 | 0.7736 | |
平均分子量 | 0.9772 | 0.5382 | 0.7495 | 0.9278 | 0.7982 |
表7 芳香分μ、dμ/dT与基本性质的关联分析结果
Table 7 The results of correlation analysis between μ,dμ/dT and properties of aromatics
参考数列 | 比较数列 | ξi | ri | |||
---|---|---|---|---|---|---|
油砂沥青芳香分 | 轻脱油芳香分 | 低凝常渣芳香分 | 超稠油常渣芳香分 | |||
μ | H/C原子比 | 0.5646 | 0.9106 | 0.7441 | 0.4957 | 0.6788 |
S含量 | 0.3564 | 0.5940 | 0.6471 | 0.3397 | 0.4843 | |
N含量 | 0.7499 | 0.6176 | 0.5485 | 0.6504 | 0.6416 | |
O含量 | 0.4910 | 0.7367 | 0.7459 | 0.4950 | 0.6171 | |
fA | 0.5868 | 0.7401 | 0.6649 | 0.5385 | 0.6326 | |
fN | 0.5573 | 0.7926 | 0.7072 | 0.5137 | 0.6427 | |
fP | 0.5601 | 1.0000 | 0.7880 | 0.4780 | 0.7065 | |
平均分子量 | 0.5678 | 0.9162 | 0.8095 | 0.4705 | 0.6910 | |
dμ/dT | H/C原子比 | 0.9672 | 0.4773 | 0.6909 | 0.8396 | 0.7437 |
S含量 | 0.4732 | 0.8061 | 0.9118 | 0.7391 | 0.7326 | |
N含量 | 1.0000 | 0.3790 | 0.5135 | 0.5913 | 0.6209 | |
O含量 | 0.7628 | 0.4227 | 0.6925 | 0.8419 | 0.6800 | |
fA | 1.0375 | 0.4239 | 0.6194 | 0.7363 | 0.7043 | |
fN | 0.9452 | 0.4414 | 0.6576 | 0.7909 | 0.7088 | |
fP | 0.9537 | 0.5119 | 0.7303 | 0.8985 | 0.7736 | |
平均分子量 | 0.9772 | 0.5382 | 0.7495 | 0.9278 | 0.7982 |
图3 四种渣油饱和分RICO后的O1类化合物分布DBE-碳数对比
Fig.3 The DBE-carbon numbers comparison of the distribution of O1 compounds of four kinds of residual oil saturates after RICO
图4 四种渣油饱和分RICO后的O1类化合物分布及碳数分布
Fig.4 The distribution of O1 compounds and carbon number distribution of four kinds of residual oil saturates after RICO
参考数列 | 比较数列 | ξi | ri | |||
---|---|---|---|---|---|---|
油砂沥青饱和分 | 轻脱油饱和分 | 低凝常渣饱和分 | 超稠油常渣饱和分 | |||
μ | DBE=0 | 0.6498 | 0.7567 | 0.8395 | 0.4113 | 0.6643 |
DBE=1 | 0.6272 | 0.7525 | 0.9992 | 0.4341 | 0.7033 | |
DBE=2 | 0.6459 | 0.7955 | 0.9760 | 0.4527 | 0.7175 | |
DBE=3 | 0.7263 | 0.8240 | 0.9089 | 0.4831 | 0.7355 | |
DBE=4 | 0.9014 | 1.0000 | 0.7408 | 0.5439 | 0.7965 | |
DBE=5 | 0.9148 | 0.8942 | 0.8348 | 0.5591 | 0.8007 | |
DBE=6 | 0.9069 | 0.8426 | 0.9075 | 0.5648 | 0.8055 | |
DBE=7 | 0.9702 | 0.9309 | 0.8874 | 0.6207 | 0.8523 | |
dμ/dT | DBE=0 | 0.6483 | 0.7563 | 0.8388 | 0.4108 | 0.6636 |
DBE=1 | 0.6258 | 0.7520 | 0.9988 | 0.4336 | 0.7025 | |
DBE=2 | 0.6444 | 0.7952 | 0.9755 | 0.4521 | 0.7168 | |
DBE=3 | 0.7246 | 0.8237 | 0.9083 | 0.4825 | 0.7348 | |
DBE=4 | 0.8993 | 1.0000 | 0.7401 | 0.5434 | 0.7957 | |
DBE=5 | 0.9127 | 0.8940 | 0.8341 | 0.5586 | 0.7999 | |
DBE=6 | 0.9048 | 0.8423 | 0.9070 | 0.5642 | 0.8046 | |
DBE=7 | 0.9680 | 0.9308 | 0.8868 | 0.6202 | 0.8514 |
表8 饱和分μ、dμ/dT与DBE分布情况的关联分析结果
Table 8 The results of correlation analysis between μ,dμ/dT and DBE distribution of saturates
参考数列 | 比较数列 | ξi | ri | |||
---|---|---|---|---|---|---|
油砂沥青饱和分 | 轻脱油饱和分 | 低凝常渣饱和分 | 超稠油常渣饱和分 | |||
μ | DBE=0 | 0.6498 | 0.7567 | 0.8395 | 0.4113 | 0.6643 |
DBE=1 | 0.6272 | 0.7525 | 0.9992 | 0.4341 | 0.7033 | |
DBE=2 | 0.6459 | 0.7955 | 0.9760 | 0.4527 | 0.7175 | |
DBE=3 | 0.7263 | 0.8240 | 0.9089 | 0.4831 | 0.7355 | |
DBE=4 | 0.9014 | 1.0000 | 0.7408 | 0.5439 | 0.7965 | |
DBE=5 | 0.9148 | 0.8942 | 0.8348 | 0.5591 | 0.8007 | |
DBE=6 | 0.9069 | 0.8426 | 0.9075 | 0.5648 | 0.8055 | |
DBE=7 | 0.9702 | 0.9309 | 0.8874 | 0.6207 | 0.8523 | |
dμ/dT | DBE=0 | 0.6483 | 0.7563 | 0.8388 | 0.4108 | 0.6636 |
DBE=1 | 0.6258 | 0.7520 | 0.9988 | 0.4336 | 0.7025 | |
DBE=2 | 0.6444 | 0.7952 | 0.9755 | 0.4521 | 0.7168 | |
DBE=3 | 0.7246 | 0.8237 | 0.9083 | 0.4825 | 0.7348 | |
DBE=4 | 0.8993 | 1.0000 | 0.7401 | 0.5434 | 0.7957 | |
DBE=5 | 0.9127 | 0.8940 | 0.8341 | 0.5586 | 0.7999 | |
DBE=6 | 0.9048 | 0.8423 | 0.9070 | 0.5642 | 0.8046 | |
DBE=7 | 0.9680 | 0.9308 | 0.8868 | 0.6202 | 0.8514 |
参考数列 | 比较数例 | ξi | ri | |||
---|---|---|---|---|---|---|
油砂沥青芳香分 | 低凝常渣芳香分 | 轻脱油芳香分 | 超稠油常渣芳香分 | |||
μ | N1 | 0.6288 | 0.8233 | 0.9559 | 0.7034 | 0.7779 |
N1O1 | 1.0000 | 0.9290 | 0.8773 | 0.8222 | 0.9071 | |
N1O2 | 0.3544 | 0.6977 | 0.8712 | 0.4684 | 0.5979 | |
O1 | 0.4021 | 0.9869 | 0.9289 | 0.4364 | 0.6886 | |
O2 | 0.7817 | 0.9467 | 0.4805 | 0.4340 | 0.6608 | |
O3 | 1.0178 | 0.8291 | 0.5165 | 0.4484 | 0.7029 | |
O4 | 0.3519 | 0.9133 | 0.7854 | 0.4223 | 0.6182 | |
dμ/dT | N1 | 0.8738 | 0.3785 | 0.7073 | 0.4924 | 0.6130 |
N1O1 | 0.5919 | 0.4681 | 0.6522 | 0.4362 | 0.5371 | |
N1O2 | 0.3684 | 0.3424 | 0.9689 | 0.8919 | 0.6429 | |
O1 | 0.4372 | 0.4193 | 0.8905 | 0.9755 | 0.6806 | |
O2 | 0.8340 | 0.4098 | 0.3659 | 0.9606 | 0.6426 | |
O3 | 0.6340 | 0.5073 | 0.3924 | 1.0000 | 0.6334 | |
O4 | 0.3650 | 0.4017 | 0.9303 | 0.8905 | 0.6469 |
表9 芳香分μ、dμ/dT与杂原子分布情况的关联分析结果
Table 9 The results of correlation analysis between μ,dμ/dT and heteroatom distribution of aromatics
参考数列 | 比较数例 | ξi | ri | |||
---|---|---|---|---|---|---|
油砂沥青芳香分 | 低凝常渣芳香分 | 轻脱油芳香分 | 超稠油常渣芳香分 | |||
μ | N1 | 0.6288 | 0.8233 | 0.9559 | 0.7034 | 0.7779 |
N1O1 | 1.0000 | 0.9290 | 0.8773 | 0.8222 | 0.9071 | |
N1O2 | 0.3544 | 0.6977 | 0.8712 | 0.4684 | 0.5979 | |
O1 | 0.4021 | 0.9869 | 0.9289 | 0.4364 | 0.6886 | |
O2 | 0.7817 | 0.9467 | 0.4805 | 0.4340 | 0.6608 | |
O3 | 1.0178 | 0.8291 | 0.5165 | 0.4484 | 0.7029 | |
O4 | 0.3519 | 0.9133 | 0.7854 | 0.4223 | 0.6182 | |
dμ/dT | N1 | 0.8738 | 0.3785 | 0.7073 | 0.4924 | 0.6130 |
N1O1 | 0.5919 | 0.4681 | 0.6522 | 0.4362 | 0.5371 | |
N1O2 | 0.3684 | 0.3424 | 0.9689 | 0.8919 | 0.6429 | |
O1 | 0.4372 | 0.4193 | 0.8905 | 0.9755 | 0.6806 | |
O2 | 0.8340 | 0.4098 | 0.3659 | 0.9606 | 0.6426 | |
O3 | 0.6340 | 0.5073 | 0.3924 | 1.0000 | 0.6334 | |
O4 | 0.3650 | 0.4017 | 0.9303 | 0.8905 | 0.6469 |
参考数列 | 比较数列 | ξi | ri | |||
---|---|---|---|---|---|---|
油砂沥青芳香分 | 低凝常渣芳香分 | 轻脱油芳香分 | 超稠油常渣芳香分 | |||
黏度 | DBE=6 | 0.6752 | 1.0000 | 0.6471 | 0.4934 | 0.7039 |
DBE=7 | 0.6679 | 0.9820 | 0.6217 | 0.4601 | 0.6829 | |
DBE=8 | 0.6118 | 0.8107 | 0.6113 | 0.3917 | 0.6064 | |
DBE=9 | 0.6107 | 0.7180 | 0.6217 | 0.3720 | 0.5806 | |
DBE=10 | 0.6015 | 0.6209 | 0.6917 | 0.3612 | 0.5688 | |
DBE=11 | 0.5909 | 0.5718 | 0.7391 | 0.3516 | 0.5634 | |
DBE=12 | 0.5676 | 0.5726 | 0.7563 | 0.3472 | 0.5609 | |
DBE=13 | 0.5784 | 0.5743 | 0.7366 | 0.3475 | 0.5592 | |
DBE=14 | 0.5308 | 0.5888 | 0.7795 | 0.3431 | 0.5606 | |
DBE=15 | 0.5257 | 0.6095 | 0.7500 | 0.3418 | 0.5568 | |
DBE=16 | 0.6883 | 0.8213 | 0.7193 | 0.4469 | 0.6690 |
表10 芳香分黏度与N1类DBE分布情况的关联分析结果
Table 10 The results of correlation analysis between aromatic viscosity and DBE distribution of N1 compounds
参考数列 | 比较数列 | ξi | ri | |||
---|---|---|---|---|---|---|
油砂沥青芳香分 | 低凝常渣芳香分 | 轻脱油芳香分 | 超稠油常渣芳香分 | |||
黏度 | DBE=6 | 0.6752 | 1.0000 | 0.6471 | 0.4934 | 0.7039 |
DBE=7 | 0.6679 | 0.9820 | 0.6217 | 0.4601 | 0.6829 | |
DBE=8 | 0.6118 | 0.8107 | 0.6113 | 0.3917 | 0.6064 | |
DBE=9 | 0.6107 | 0.7180 | 0.6217 | 0.3720 | 0.5806 | |
DBE=10 | 0.6015 | 0.6209 | 0.6917 | 0.3612 | 0.5688 | |
DBE=11 | 0.5909 | 0.5718 | 0.7391 | 0.3516 | 0.5634 | |
DBE=12 | 0.5676 | 0.5726 | 0.7563 | 0.3472 | 0.5609 | |
DBE=13 | 0.5784 | 0.5743 | 0.7366 | 0.3475 | 0.5592 | |
DBE=14 | 0.5308 | 0.5888 | 0.7795 | 0.3431 | 0.5606 | |
DBE=15 | 0.5257 | 0.6095 | 0.7500 | 0.3418 | 0.5568 | |
DBE=16 | 0.6883 | 0.8213 | 0.7193 | 0.4469 | 0.6690 |
参考数列 | 比较数列 | ξi | ri | |||
---|---|---|---|---|---|---|
油砂沥青胶质 | 低凝常渣胶质 | 轻脱油胶质 | 超稠油常渣胶质 | |||
虚拟黏度 | N1 | 0.6693 | 0.6890 | 0.6694 | 0.4038 | 0.6079 |
N1O1 | 0.5755 | 0.6617 | 0.7553 | 0.3832 | 0.5939 | |
N1O2 | 0.6105 | 0.6368 | 0.7644 | 0.3916 | 0.6008 | |
N2 | 0.7060 | 0.6077 | 0.7531 | 0.4120 | 0.6197 | |
O1 | 1.0000 | 0.6837 | 0.5877 | 0.4543 | 0.6814 | |
O2 | 0.5934 | 0.6464 | 0.7573 | 0.3861 | 0.5958 | |
O3 | 0.5461 | 0.5508 | 0.8967 | 0.3573 | 0.5877 | |
Ca | 0.7161 | 0.6374 | 0.7276 | 0.4208 | 0.6255 | |
Fe | 0.9497 | 0.7953 | 0.5757 | 0.4798 | 0.7001 | |
Na | 0.8024 | 0.7117 | 0.6819 | 0.4640 | 0.6650 | |
Ni | 0.9534 | 0.7721 | 0.6245 | 0.5044 | 0.7136 | |
V | 0.8377 | 0.3749 | 0.9561 | 0.3396 | 0.6271 |
表11 胶质黏度与杂原子分布情况的关联分析结果
Table 11 The results of correlation analysis between the resin viscosity and the distribution of heteroatoms
参考数列 | 比较数列 | ξi | ri | |||
---|---|---|---|---|---|---|
油砂沥青胶质 | 低凝常渣胶质 | 轻脱油胶质 | 超稠油常渣胶质 | |||
虚拟黏度 | N1 | 0.6693 | 0.6890 | 0.6694 | 0.4038 | 0.6079 |
N1O1 | 0.5755 | 0.6617 | 0.7553 | 0.3832 | 0.5939 | |
N1O2 | 0.6105 | 0.6368 | 0.7644 | 0.3916 | 0.6008 | |
N2 | 0.7060 | 0.6077 | 0.7531 | 0.4120 | 0.6197 | |
O1 | 1.0000 | 0.6837 | 0.5877 | 0.4543 | 0.6814 | |
O2 | 0.5934 | 0.6464 | 0.7573 | 0.3861 | 0.5958 | |
O3 | 0.5461 | 0.5508 | 0.8967 | 0.3573 | 0.5877 | |
Ca | 0.7161 | 0.6374 | 0.7276 | 0.4208 | 0.6255 | |
Fe | 0.9497 | 0.7953 | 0.5757 | 0.4798 | 0.7001 | |
Na | 0.8024 | 0.7117 | 0.6819 | 0.4640 | 0.6650 | |
Ni | 0.9534 | 0.7721 | 0.6245 | 0.5044 | 0.7136 | |
V | 0.8377 | 0.3749 | 0.9561 | 0.3396 | 0.6271 |
参考数列 | 比较数列 | ξi | ri | |||
---|---|---|---|---|---|---|
油砂沥青胶质 | 低凝常渣胶质 | 轻脱油胶质 | 超稠油常渣胶质 | |||
虚拟黏度 | DBE=4 | 0.9484 | 0.6225 | 0.6815 | 0.4699 | 0.6806 |
DBE=5 | 0.8755 | 0.6581 | 0.6126 | 0.4359 | 0.6455 | |
DBE=6 | 0.8577 | 0.5659 | 1.0000 | 0.5174 | 0.7352 | |
DBE=7 | 0.9985 | 0.9943 | 0.9899 | 0.3333 | 0.8290 | |
DBE=8 | 0.5898 | 0.7270 | 0.6410 | 0.3801 | 0.5845 | |
DBE=9 | 0.6156 | 0.7032 | 0.6464 | 0.3856 | 0.5877 | |
DBE=10 | 0.6232 | 0.6849 | 0.6400 | 0.3806 | 0.5822 | |
DBE=11 | 0.5618 | 0.6915 | 0.6790 | 0.3706 | 0.5757 | |
DBE=12 | 0.4904 | 0.7032 | 0.7502 | 0.3579 | 0.5754 | |
DBE=13 | 0.5904 | 0.6171 | 0.6964 | 0.3636 | 0.5669 | |
DBE=14 | 0.6143 | 0.5882 | 0.7012 | 0.3631 | 0.5667 |
表12 胶质虚拟黏度与O1类DBE分布情况的关联分析结果
Table 12 The results of correlation analysis between the resin viscosity and the DBE distribution of O1 compounds
参考数列 | 比较数列 | ξi | ri | |||
---|---|---|---|---|---|---|
油砂沥青胶质 | 低凝常渣胶质 | 轻脱油胶质 | 超稠油常渣胶质 | |||
虚拟黏度 | DBE=4 | 0.9484 | 0.6225 | 0.6815 | 0.4699 | 0.6806 |
DBE=5 | 0.8755 | 0.6581 | 0.6126 | 0.4359 | 0.6455 | |
DBE=6 | 0.8577 | 0.5659 | 1.0000 | 0.5174 | 0.7352 | |
DBE=7 | 0.9985 | 0.9943 | 0.9899 | 0.3333 | 0.8290 | |
DBE=8 | 0.5898 | 0.7270 | 0.6410 | 0.3801 | 0.5845 | |
DBE=9 | 0.6156 | 0.7032 | 0.6464 | 0.3856 | 0.5877 | |
DBE=10 | 0.6232 | 0.6849 | 0.6400 | 0.3806 | 0.5822 | |
DBE=11 | 0.5618 | 0.6915 | 0.6790 | 0.3706 | 0.5757 | |
DBE=12 | 0.4904 | 0.7032 | 0.7502 | 0.3579 | 0.5754 | |
DBE=13 | 0.5904 | 0.6171 | 0.6964 | 0.3636 | 0.5669 | |
DBE=14 | 0.6143 | 0.5882 | 0.7012 | 0.3631 | 0.5667 |
1 | Huang X T, Zhou C H, Suo Q Y, et al. Experimental study on viscosity reduction for residual oil by ultrasonic[J]. Ultrasonics Sonochemistry, 2018, 41: 661-669. |
2 | Liu H J, Zhou H Q, Guo X Q, et al. Advances in low-quality residual oil processing and application technology[J]. Sino-Global Energy, 2012, 17(2): 74-79. |
3 | Stratiev D, Shishkova I, Nikolova R, et al. Investigation on precision of determination of sara analysis of vacuum residual oils from different origin[J]. Petroleum & Coal, 2016, 58(1):109-119. |
4 | Stratiev D, Shishkova I, Tankov I, et al. Challenges in characterization of residual oils. A review[J]. Journal of Petroleum Science and Engineering, 2019, 178: 227-250. |
5 | Sheu E Y, Mullins O C. Fundamentals and Applications[M]. New York: Plenum Press, 1995: 1-2. |
6 | Mack C. Colloid chemistry of asphalts[J]. The Journal of Physical Chemistry, 1932, 36(12): 2901-2914. |
7 | Dealy J M. Rheological properties of oil sand bitumens[J]. The Canadian Journal of Chemical Engineering, 1979, 57(6): 677-683. |
8 | Argillier J F, Coustet C, Hénaut I. Heavy oil rheology as a function of asphaltene and resin content and temperature[C]// SPE International Thermal Operations and Heavy Oil Symposium. Calgary, Alberta, Canada: Society of Petroleum Engineers, 2002: 121-129. |
9 | Zarrin P, Jamal F, Roeckendorf N, et al. Development of a portable dielectric biosensor for rapid detection of viscosity variations and its in vitro evaluations using saliva samples of COPD patients and healthy control[J]. Healthcare, 2019, 7(1): 11. |
10 | Ende T. Extensional viscosity aspects of HPAM in porous flow: an experimental and numerical study[D]. TU Delft: Delft University of Technology, 2015. |
11 | Sharma V, Jaishankar A, Wang Y C, et al. Rheology of globular proteins: apparent yield stress, high shear rate viscosity and interfacial viscoelasticity of bovine serum albumin solutions[J]. Soft Matter, 2011, 7(11): 5150-5160. |
12 | Zidar M, Rozman P, Belko-Parkel K, et al. Control of viscosity in biopharmaceutical protein formulations[J]. Journal of Colloid and Interface Science, 2020, 580: 308-317. |
13 | Castellanos M M, Pathak J A, Colby R H. Both protein adsorption and aggregation contribute to shear yielding and viscosity increase in protein solutions[J]. Soft Matter, 2014, 10(1): 122-131. |
14 | Cho Y, Ahmed A, Islam A, et al. Developments in FT-ICR MS instrumentation, ionization techniques, and data interpretation methods for petroleomics[J]. Mass Spectrometry Reviews, 2015, 34(2): 248-263. |
15 | Rodgers R P, Blumer E N, Hendrickson C L, et al. Stable isotope incorporation triples the upper mass limit for determination of elemental composition by accurate mass measurement[J]. Journal of the American Society for Mass Spectrometry, 2000, 11(10): 835-840. |
16 | Hughey C A, Rodgers R P, Marshall A G. Resolution of 11000 compositionally distinct components in a single electrospray ionization Fourier transform ion cyclotron resonance mass spectrum of crude oil[J]. Analytical Chemistry, 2002, 74(16): 4145-4149. |
17 | Xian F, Hendrickson C L, Marshall A G. High resolution mass spectrometry[J]. Analytical Chemistry, 2012, 84(2): 708-719. |
18 | Bae E, Na J G, Chung S H, et al. Identification of about 30000 chemical components in shale oils by electrospray ionization (ESI) and atmospheric pressure photoionization (APPI) coupled with 15 T Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and a comparison to conventional oil[J]. Energy & Fuels, 2010, 24(4): 2563-2569. |
19 | Hur M, Yeo I, Kim E, et al. Correlation of FT-ICR mass spectra with the chemical and physical properties of associated crude oils[J]. Energy & Fuels, 2010, 24(10): 5524-5532. |
20 | Hur M, Yeo I, Park E, et al. Combination of statistical methods and Fourier transform ion cyclotron resonance mass spectrometry for more comprehensive, molecular-level interpretations of petroleum samples[J]. Analytical Chemistry, 2010, 82(1): 211-218. |
21 | Cho Y, Witt M, Kim Y H, et al. Characterization of crude oils at the molecular level by use of laser desorption ionization fourier-transform ion cyclotron resonance mass spectrometry[J]. Analytical Chemistry, 2012, 84(20): 8587-8594. |
22 | Panda S, Andersson J, Schrader W. Characterization of super complex crude oil mixtures: what is really in there?[J]. Angewandte Chemie International Edition, 2009, 48(10): 1788-1791. |
23 | Qian K N, Rodgers R P, Hendrickson C L, et al. Reading chemical fine print: resolution and identification of 3000 nitrogen-containing aromatic compounds from a single electrospray ionization Fourier transform ion cyclotron resonance mass spectrum of heavy petroleum crude oil[J]. Energy & Fuels, 2001, 15(2): 492-498. |
24 | Cho Y, Na J G, Nho N S, et al. Application of saturates, aromatics, resins, and asphaltenes crude oil fractionation for detailed chemical characterization of heavy crude oils by Fourier transform ion cyclotron resonance mass spectrometry equipped with atmospheric pressure photoionization[J]. Energy & Fuels, 2012, 26(5): 2558-2565. |
25 | Klein G C, Angström A, Rodgers R P, et al. Use of saturates/aromatics/resins/asphaltenes (SARA) fractionation to determine matrix effects in crude oil analysis by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry[J]. Energy & Fuels, 2006, 20(2): 668-672. |
26 | Shi Q A, Hou D J, Chung K H, et al. Characterization of heteroatom compounds in a crude oil and its saturates, aromatics, resins, and asphaltenes (SARA) and non-basic nitrogen fractions analyzed by negative-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry[J]. Energy & Fuels, 2010, 24(4): 2545-2553. |
27 | Gaspar A, Zellermann E, Lababidi S, et al. Characterization of saturates, aromatics, resins, and asphaltenes heavy crude oil fractions by atmospheric pressure laser ionization Fourier transform ion cyclotron resonance mass spectrometry[J]. Energy & Fuels, 2012, 26(6): 3481-3487. |
28 | Liu P, Shi Q A, Chung K H, et al. Molecular characterization of sulfur compounds in Venezuela crude oil and its SARA fractions by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry[J]. Energy & Fuels, 2010, 24(9): 5089-5096. |
29 | Liang W J, Que G H, Chen Y Z. A study on the vacuum residua from three domestic crudes[J]. Pet. Process. Petrochem, 1982, 55: 40-48. |
30 | 梁文杰, 阙国和, 陈月珠. 我国原油减压渣油的化学组成与结构(Ⅱ): 减压渣油及其各组分的平均结构[J]. 石油学报(石油加工), 1991, 7(4): 1-11. |
Liang W J, Que G H, Chen Y Z. Chemical composition and structure of vacuum residues of Chinese crudes(Ⅱ): Average structure of vacuum residues and their fractions[J]. Acta Petrolei Sinica (Petroleum Processing Section), 1991, 7(4): 1-11. | |
31 | Zhou X B, Shi Q A, Zhang Y H, et al. Analysis of saturated hydrocarbons by redox reaction with negative-ion electrospray Fourier transform ion cyclotron resonance mass spectrometry[J]. Analytical Chemistry, 2012, 84(7): 3192-3199. |
32 | Zhou X B, Zhang Y H, Zhao S Q, et al. Characterization of saturated hydrocarbons in vacuum petroleum residua: redox derivatization followed by negative-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry[J]. Energy & Fuels, 2014, 28(1): 417-422. |
33 | 张家庆, 蒋榕培, 史伟康, 等. 煤基/石油基火箭煤油高参数黏温特性与组分特性研究[J]. 化工学报, 2023, 74(2): 653-665. |
Zhang J Q, Jiang R P, Shi W K, et al. Study on viscosity-temperature characteristics and component characteristics of rocket kerosene[J]. CIESC Journal, 2023, 74(2): 653-665. | |
34 | 胡松山, 王浩, 覃润浦, 等. 沥青四组分与不同加载模式下橡胶沥青零剪切黏度相关性[J]. 复合材料学报, 2018, 35(4): 999-1013. |
Hu S S, Wang H, Qin R P, et al. Correlation between asphalt four components and asphalt rubber zero shear viscosity under different loading modes[J]. Acta Materiae Compositae Sinica, 2018, 35(4): 999-1013. | |
35 | 刘文静, 靳岚, 张金刚, 等. 基于灰色关联法与FAHP的磨煤机能耗分析[J]. 甘肃科学学报, 2022, 34(5): 12-17. |
Liu W J, Jin L, Zhang J G, et al. Energy consumption analysis of coal mill based on grey correlation method and FAHP[J]. Journal of Gansu Sciences, 2022, 34(5): 12-17. |
[1] | 赵亚欣, 张雪芹, 王荣柱, 孙国, 姚善泾, 林东强. 流穿模式离子交换层析去除单抗聚集体[J]. 化工学报, 2023, 74(9): 3879-3887. |
[2] | 林典, 江国梅, 徐秀彬, 赵波, 刘冬梅, 吴旭. 硅基类液防原油黏附涂层的研制及其减阻性能研究[J]. 化工学报, 2023, 74(8): 3438-3445. |
[3] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[4] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[5] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[6] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[7] | 张缘良, 栾昕奇, 苏伟格, 李畅浩, 赵钟兴, 周利琴, 陈健民, 黄艳, 赵祯霞. 离子液体复合萃取剂选择性萃取尼古丁的研究及DFT计算[J]. 化工学报, 2023, 74(7): 2947-2956. |
[8] | 高金明, 郭玉娇, 鄂承林, 卢春喜. 一种封闭罩内顺流多旋臂气液分离器的分离特性研究[J]. 化工学报, 2023, 74(7): 2957-2966. |
[9] | 韩奎奎, 谭湘龙, 李金芝, 杨婷, 张春, 张永汾, 刘洪全, 于中伟, 顾学红. 四通道中空纤维MFI分子筛膜用于二甲苯异构体分离[J]. 化工学报, 2023, 74(6): 2468-2476. |
[10] | 朱兴驰, 郭志远, 纪志永, 汪婧, 张盼盼, 刘杰, 赵颖颖, 袁俊生. 选择性电渗析镁锂分离过程模拟优化[J]. 化工学报, 2023, 74(6): 2477-2485. |
[11] | 王蕾, 王磊, 白云龙, 何柳柳. SA膜状锂离子筛的制备及其锂吸附性能[J]. 化工学报, 2023, 74(5): 2046-2056. |
[12] | 雷博雯, 吴建华, 吴启航. R290低压比热泵高补气过热度循环研究[J]. 化工学报, 2023, 74(5): 1875-1883. |
[13] | 蔺彩虹, 王丽, 吴瑜, 刘鹏, 杨江峰, 李晋平. 沸石中碱金属阳离子对CO2/N2O吸附分离性能的影响[J]. 化工学报, 2023, 74(5): 2013-2021. |
[14] | 孙永尧, 高秋英, 曾文广, 王佳铭, 陈艺飞, 周永哲, 贺高红, 阮雪华. 面向含氮油田伴生气提质利用的膜耦合分离工艺设计优化[J]. 化工学报, 2023, 74(5): 2034-2045. |
[15] | 周必茂, 许世森, 王肖肖, 刘刚, 李小宇, 任永强, 谭厚章. 烧嘴偏转角度对气化炉渣层分布特性的影响[J]. 化工学报, 2023, 74(5): 1939-1949. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 95
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 219
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||