化工学报 ›› 2019, Vol. 70 ›› Issue (3): 1006-1015.DOI: 10.11949/j.issn.0438-1157.20180820
收稿日期:
2018-07-18
修回日期:
2018-11-26
出版日期:
2019-03-05
发布日期:
2019-03-05
通讯作者:
王衍
作者简介:
<named-content content-type="corresp-name">胡琼</named-content>(1989—),女,博士,讲师,<email>njfuhuqiong@163.com</email>|王衍(1989—),男,博士,副教授,<email>qqwangyan2006@163.com</email>
基金资助:
Qiong HU1(),Yan WANG1(),Rong DAI1,Jianjun SUN2,Xiaoqing ZHENG3
Received:
2018-07-18
Revised:
2018-11-26
Online:
2019-03-05
Published:
2019-03-05
Contact:
Yan WANG
摘要:
基于激光技术的干气密封开槽方法,提出在圆弧线槽干气密封(A-DGS)槽底开设粗糙度量级的有序微造型,以提高开槽效率、降低成本。采用有限体积法对无微造型圆弧线槽干气密封进行仿真分析,通过与现有文献对比验证了仿真方法的正确性;对微造型结构进行分析和筛选,获得偏移迎风侧与偏移背风侧结构对密封性能影响基本无差,本研究基于偏移背风侧微造型结构进行深入研究;与无微造型圆弧线槽进行对比,分析了不同几何参数和工况参数下的开启力和泄漏量变化情况;最后对各参数的影响程度进行对比分析。结果表明:同工况下,具微造型圆弧线槽干气密封(MA-DGS)的开启力较A-DGS有一定提升,在低速高压及小槽深时提升效果最好;微造型深度和微造型宽间比对干气密封开启力的影响在给定情况下甚于膜厚与转速的影响;密封端面槽型结构优化参数不受槽底微造型设计的影响;基于Taguchi实验设计方法,可以便捷准确地获得不同影响因子的影响程度,帮助工程设计。
中图分类号:
胡琼, 王衍, 戴嵘, 孙见君, 郑小清. 基于有序微造型的圆弧线槽干气密封性能分析[J]. 化工学报, 2019, 70(3): 1006-1015.
Qiong HU, Yan WANG, Rong DAI, Jianjun SUN, Xiaoqing ZHENG. Performance study of arc groove dry gas seal based on orderly micro-structure[J]. CIESC Journal, 2019, 70(3): 1006-1015.
Film thickness δ/μm | Opening force Fo/kN | ||||
---|---|---|---|---|---|
Ref.[26] | Ref.[27] | Calculation | Error 1/% | Error 2/% | |
2.03 | 40.71 | 35.17 | 37.09 | 8.89 | 5.46 |
3.05 | 33.17 | 31.50 | 33.02 | 0.45 | 4.83 |
5.08 | 29.57 | 29.37 | 30.16 | 2.60 | 2.69 |
表1 开启性能对比
Table 1 Comparison of opening performance
Film thickness δ/μm | Opening force Fo/kN | ||||
---|---|---|---|---|---|
Ref.[26] | Ref.[27] | Calculation | Error 1/% | Error 2/% | |
2.03 | 40.71 | 35.17 | 37.09 | 8.89 | 5.46 |
3.05 | 33.17 | 31.50 | 33.02 | 0.45 | 4.83 |
5.08 | 29.57 | 29.37 | 30.16 | 2.60 | 2.69 |
Parameter | Value |
---|---|
ro/mm | 80 |
rg/mm | 70 |
rm/mm | 75 |
ri/mm | 60 |
λ | 1 |
hg/μm | 2—10取整数 |
δ/μm | 2—10取整数 |
medium | air |
po/MPa | 0.1/0.5/1/2/3/4 |
pi/MPa | 0.1013 |
N/(r·min-1) | 3000/6000/10000/15000/20000/30000 |
Ng | 10 |
表2 仿真参数
Table 2 Parameters of simulation
Parameter | Value |
---|---|
ro/mm | 80 |
rg/mm | 70 |
rm/mm | 75 |
ri/mm | 60 |
λ | 1 |
hg/μm | 2—10取整数 |
δ/μm | 2—10取整数 |
medium | air |
po/MPa | 0.1/0.5/1/2/3/4 |
pi/MPa | 0.1013 |
N/(r·min-1) | 3000/6000/10000/15000/20000/30000 |
Ng | 10 |
Geometric parameter | Range of preferred value |
---|---|
Bm/mm | 0.1/0.2/0.3/0.4/0.5/0.6/0.7/0.8 |
ε/μm | 0.5/0.6/0.7/0.8/0.9/1.0/1.1/1.2/1.3 |
Cm/mm | 0.1/0.2/0.3/0.4/0.5/0.6/0.7/0.8 |
γ | 1 |
表3 微造型优选值
Table 3 Preferred values of micro structure
Geometric parameter | Range of preferred value |
---|---|
Bm/mm | 0.1/0.2/0.3/0.4/0.5/0.6/0.7/0.8 |
ε/μm | 0.5/0.6/0.7/0.8/0.9/1.0/1.1/1.2/1.3 |
Cm/mm | 0.1/0.2/0.3/0.4/0.5/0.6/0.7/0.8 |
γ | 1 |
Rotation speed, N/(r·min-1) | Opening force, Fo/kN | Leakage rate,Q/(m3·h-1) | ||
---|---|---|---|---|
Windward | Leeward | Windward | Leeward | |
3000 | 13.58 | 13.57 | 0.0102 | 0.0102 |
6000 | 14.38 | 14.36 | 0.0112 | 0.0111 |
10000 | 15.45 | 15.42 | 0.0124 | 0.0124 |
15000 | 16.79 | 16.75 | 0.0140 | 0.0139 |
20000 | 18.13 | 18.08 | 0.0155 | 0.0155 |
30000 | 20.81 | 20.74 | 0.0186 | 0.0186 |
40000 | 23.49 | 23.41 | 0.0217 | 0.0217 |
表4 不同微造型结构性能对比
Table 4 Performance comparisons of different micro structures(po=2 MPa, δ=2 μm, hg=4 μm)
Rotation speed, N/(r·min-1) | Opening force, Fo/kN | Leakage rate,Q/(m3·h-1) | ||
---|---|---|---|---|
Windward | Leeward | Windward | Leeward | |
3000 | 13.58 | 13.57 | 0.0102 | 0.0102 |
6000 | 14.38 | 14.36 | 0.0112 | 0.0111 |
10000 | 15.45 | 15.42 | 0.0124 | 0.0124 |
15000 | 16.79 | 16.75 | 0.0140 | 0.0139 |
20000 | 18.13 | 18.08 | 0.0155 | 0.0155 |
30000 | 20.81 | 20.74 | 0.0186 | 0.0186 |
40000 | 23.49 | 23.41 | 0.0217 | 0.0217 |
δ/μm | Fo/kN | Q/(m3·h-1) | ||||
---|---|---|---|---|---|---|
A-DGS | MA-DGS | Deviation/% | A-DGS | MA-DGS | Deviation/% | |
2 | 15.53 | 15.57 | 0.26 | 0.0122 | 0.0124 | 1.64 |
3 | 13.6 | 13.71 | 0.81 | 0.0337 | 0.035 | 3.86 |
5 | 12.06 | 12.27 | 1.74 | 0.128 | 0.1339 | 4.61 |
表5 性能参数比较
Table 5 Performance parameters for comparison(po=2 MPa, hg=4 μm)
δ/μm | Fo/kN | Q/(m3·h-1) | ||||
---|---|---|---|---|---|---|
A-DGS | MA-DGS | Deviation/% | A-DGS | MA-DGS | Deviation/% | |
2 | 15.53 | 15.57 | 0.26 | 0.0122 | 0.0124 | 1.64 |
3 | 13.6 | 13.71 | 0.81 | 0.0337 | 0.035 | 3.86 |
5 | 12.06 | 12.27 | 1.74 | 0.128 | 0.1339 | 4.61 |
Level | Pressure po | Rotation N | Film thickness δ | Groove depth hg |
---|---|---|---|---|
1 | 4.39 | 13.15 | 14.40 | 12.52 |
2 | 8.41 | 13.71 | 12.60 | 14.84 |
3 | 10.86 | 12.89 | 13.44 | 12.66 |
4 | 17.59 | 12.24 | 13.10 | 12.51 |
5 | 25.15 | 14.41 | 12.86 | 13.87 |
delta | 20.76 | 2.17 | 1.80 | 2.33 |
rank | 1 | 3 | 4 | 2 |
表6 参数对A-DGS开启力的影响
Table 6 Influence of parameters on A-DGS opening force/kN
Level | Pressure po | Rotation N | Film thickness δ | Groove depth hg |
---|---|---|---|---|
1 | 4.39 | 13.15 | 14.40 | 12.52 |
2 | 8.41 | 13.71 | 12.60 | 14.84 |
3 | 10.86 | 12.89 | 13.44 | 12.66 |
4 | 17.59 | 12.24 | 13.10 | 12.51 |
5 | 25.15 | 14.41 | 12.86 | 13.87 |
delta | 20.76 | 2.17 | 1.80 | 2.33 |
rank | 1 | 3 | 4 | 2 |
Level | Pressure po | Rotation N | Film thickness δ | Groove depth hg | Micro depth ε | Micro ratio Bm/Cm |
---|---|---|---|---|---|---|
1 | 4.35 | 13.17 | 14.06 | 11.70 | 12.18 | 12.65 |
2 | 8.33 | 13.14 | 12.14 | 14.07 | 12.73 | 12.19 |
3 | 10.97 | 12.36 | 12.51 | 12.18 | 14.50 | 12.53 |
4 | 17.15 | 11.93 | 12.62 | 12.57 | 12.61 | 14.20 |
5 | 23.20 | 13.41 | 12.67 | 13.48 | 11.98 | 12.44 |
delta | 18.85 | 1.47 | 1.91 | 2.37 | 2.53 | 2.01 |
rank | 1 | 6 | 5 | 3 | 2 | 4 |
表7 参数对MA-DGS开启力的影响
Table 7 Influence of parameters on MA-DGS opening force/kN
Level | Pressure po | Rotation N | Film thickness δ | Groove depth hg | Micro depth ε | Micro ratio Bm/Cm |
---|---|---|---|---|---|---|
1 | 4.35 | 13.17 | 14.06 | 11.70 | 12.18 | 12.65 |
2 | 8.33 | 13.14 | 12.14 | 14.07 | 12.73 | 12.19 |
3 | 10.97 | 12.36 | 12.51 | 12.18 | 14.50 | 12.53 |
4 | 17.15 | 11.93 | 12.62 | 12.57 | 12.61 | 14.20 |
5 | 23.20 | 13.41 | 12.67 | 13.48 | 11.98 | 12.44 |
delta | 18.85 | 1.47 | 1.91 | 2.37 | 2.53 | 2.01 |
rank | 1 | 6 | 5 | 3 | 2 | 4 |
1 | 徐奇超, 江锦波, 陈源, 等.经典曲线型槽干气密封稳动态密封特性数值分析[J]. 摩擦学学报, 2018, 38(5): 584-594. |
XuQ C, JiangJ B, ChenY, et al. Numerical analysis of steady-state and dynamic characteristics of typical molded line groove dry gas seals[J]. Tribology, 2018, 38(5): 584-594. | |
2 | PatirN, ChengH S. An average flow model for determining effects of three-dimensional roughness on partial hydrodynamic lubrication[J]. Journal of Lubrication Technology, Transactions of ASME, 1978, 100(1): 12-17. |
3 | PatirN, ChengH S. Application of average flow model to lubrication between rough sliding surfaces[J]. ASME Journal of Lubrication Technology, 1979, 101: 220-230. |
4 | JB/T11289-2012. 干气密封技术条件[S]. 北京: 机械工业出版社, 2012. |
JB/T11289-2012. Specification for dry gas seal[S]. Beijing: Mechanical Industry Press, 2012. | |
5 | 冯向忠, 彭旭东. 表面粗糙度对螺旋槽干式气体密封性能的影响[J]. 润滑与密封, 2006, (1): 20-22. |
MaX Z, PengX D. Effect of surface roughness on performance of a spiral groove gas seal[J]. Lubrication Engineering, 2006, (1): 20-22. | |
6 | GlienickeJ, LuanertA, SchlumsH. Non-contacting gas lubricated face seals for high PV-values[C]//NASA. Lewis Research Center, Seals Flow Code Development. US, 1993: 367-378 |
7 | WangY M, WangJ L, YangH X, et al. Development of shaft sealing technology of high-speed turbo-compressors in process industries[C]//8th Asian International Conference on Fluid Machinery. Yichang, China, 2005. |
8 | 彭旭东, 李纪云, 白少先, 等. 三维似羽毛织构底面型槽气体端面密封结构: 200910102184.1[P]. 2009-08-20. |
PengX D, LiJ Y, BaiS X, et al. Three-dimensional gas end face seal with feather-like texture on the groove bottom: 200910102184.1[P]. 2009-08-20. | |
9 | 彭旭东, 李纪云, 白少先, 等. 三维似鱼鳞织构底面型槽流体动压型液体机械密封结构: 200910101512.6[P]. 2009-08-06. |
PengX D, LiJ Y, BaiS X, et al. Three-dimensional fluid dynamic liquid mechanical seal with ichthyoid-like texture on the groove bottom: 200910101512.6[P]. 2009-08-06. | |
10 | 毛文元, 宋鹏云, 邓国强, 等. 螺旋槽底表面粗糙度对干气密封性能的影响[J]. 润滑与密封, 2017, 42(1): 27-33. |
MaoW Y, SongP Y, DengG Q, et al. Influence of surface roughness of dpiral groove bottom on dry gas seal performance[J].Lubrication Engineering, 2017, 42(1): 27-33. | |
11 | SlawomirB, AndriyV Z. A parametric and dynamic analysis of non-contacting gas face seals with modified surfaces[J]. Tribology International, 2016, 94: 126-137. |
12 | MaC B, GuW F, TuQ A, et al. Experimental investigation on frictional property of mechanical seals with varying dimple diameter along the radial face[J]. Advances in Mechanical Engineering. 2016, 8 (8): 1-9. |
13 | MaC B, SunJ J, WangY, et al. On the optimum dimple depth-over-diameter ratio for textured surfaces[J]. Advances in Mechanical Engineering, 2017, 9 (9): 1-8. |
14 | SuH, RahmaniR, RahnejatH. Performance evaluation of bidirectional dry gas seals with special groove geometry[J].Tribology Transactions, 2017, 60(1): 58-69. |
15 | WangY, SunJ J, HuQ, et al. Orientation effect of orderly roughness micro structure on spiral groove dry gas seal[J]. Tribology International, 2018, 126: 97-105. |
16 | 戴伟. 一种用高能激光加工干气密封螺旋槽的方法[J]. 石油化工设备, 2013, 42(4): 45-48. |
DaiW. A split lip seal method by high energy laser[J]. Perto-Chemical Equipment, 2013, 42(4): 45-48. | |
17 | 毛文元, 宋鹏云, 邓强国, 等. 干气密封螺旋槽的激光加工工艺研究[J]. 工程科学与技术, 2018, 50(5): 253-262. |
MaoW Y, SongP Y, DengQ G, et al. Research on laser processing technology of spiral groove for dry gas seal[J]. Advanced Engineering Sciences, 2018, 50(5): 253-262. | |
18 | 任晓, 吴承伟, 周平. 粗糙表面的气体密封性能研究[J]. 机械工程学报, 2010, 46(16): 176-181. |
RenX, WuC W, ZhouP. Dry gas seal technology conditions[J]. Journal of Mechanical Engineering, 2010, 46(16): 176-181. | |
19 | 马晨波, 朱华, 孙见君. 考虑粗糙度影响的表面织构最优参数设计模型[J]. 华中科技大学学报(自然科学版), 2011, 39(8): 14-18(35).Ma C B, Zhu H, Sun J J. Optimal design model of surface texture with surface roughness considered[J].J. Huazhong Univ. of Sci. &Tech. (Natural Science Edition), 2011, 39(8): 14-18(35). |
20 | ChenC Y, ChungC J, WuB H, et al. Microstructure and lubricating property of ultra-fast laser pulse textured silicon carbide seals[J]. Applied Physics A: Materials Science & Processing, 2012, 107(2): 345-350. |
21 | 王建荣, 顾永泉, 陈弘. 圆弧槽气体润滑非接触式机械封密的特性[J]. 流体机械, 1991, (3): 1-6. |
WangJ R, GuY Q, ChenH. Characteristics of arc-groove non-contact mechanical seal with gas lubrication[J]. Fluid Machinery, 1991, (3): 1-6. | |
22 | 王福军. 计算流体动力学分析——CFD软件原理与应用[M]. 北京: 清华大学出版社, 2004. |
WangF J. Computational Fluid Dynamics Analysis—Theory and Application of CFD Software[M]. Beijing: Tsinghua University Press, 2005. | |
23 | BoR. Finite element analysis of the spiral groove gas face seal at the slow speed and the low pressure conditions slip flow consideration [J]. Tribology Transactions, 2000, 43 (3): 411-418. |
24 | 王衍, 孙见君, 马晨波, 等. 改良圆弧线槽干气密封多参数CFD数值分析[J]. 中南大学学报, 2014, 45(6): 1834-1840. |
WangY, SunJ J, MaC B, et al. Multi parameter CFD numerical analysis of improved T-groove dry gas seal[J]. Tribology, 2014, 45(6): 1834-1840. | |
25 | 王衍, 孙见君, 陶凯, 等. 圆弧线槽干气密封数值分析及槽型优化[J]. 摩擦学学报, 2014, 34(4): 420-427. |
WangY, SunJ J, TaoK, et al. Numerical analysis of T-groove dry gas seal and groove optimization[J]. Tribology, 2014, 34(4): 420-427. | |
26 | GabrielR P. Fundamentals of spiral groove non-contacting face seals[J]. Lubrication Engineering, 1994, 50(3): 215–224. |
27 | WangB, ZhangH Q, CaoH J. Flow dynamics of a spiral groove dry gas seal[J]. Chinese Journal of Mechanical Engineering, 2013, 26(1) : 78-84. |
28 | MalequeM A, BelloK A, AdebisiA A, et al. Optimization of tribological performance of SiC embedded composite coating via Taguchi analysis approach[C]// International Conference on Mechanical, Automotive and Aerospace Engineering. Malaysia: IOP Publishing, 2017, 184: 1-8. |
29 | PulivartiS R, BirruA K, DepartmentM E . Optimization of green sand mould system using Taguchi based grey relational analysis[J]. China Foundry, 2018, 15(2): 152-159. |
30 | 彭旭东, 李纪云, 盛颂恩, 等. 表面粗糙度对螺旋槽干式气体端面密封性能预测与结构优化的影响[J]. 摩擦学学报, 2007, 27(6): 567-572. |
PengX D, LiJ Y, ShengS E, et al. Effect of surface roughness on performance prediction and geometric optimization of a spiral-groove face seal[J]. Tribology, 2007, 27(6): 567-572. |
[1] | 丁俊华, 俞树荣, 王世鹏, 洪先志, 包鑫, 丁雪兴. 多重效应下超高速干气密封流场模拟及密封性能试验[J]. 化工学报, 2023, 74(5): 2088-2099. |
[2] | 孙雪剑, 宋鹏云, 毛文元, 邓强国, 许恒杰, 陈维. 考虑密封环材料属性和表面形貌干气密封启停阶段的动态接触特性分析[J]. 化工学报, 2021, 72(8): 4279-4291. |
[3] | 严如奇, 丁雪兴, 徐洁, 洪先志, 包鑫. 基于湍流模型的S-CO2干气密封流场与稳态性能分析[J]. 化工学报, 2021, 72(8): 4292-4303. |
[4] | 江鹏, 江锦波, 彭旭东, 孟祥铠, 马艺. 传热模型对近临界工况CO2干气密封温压分布和稳态性能影响[J]. 化工学报, 2021, 72(8): 4239-4254. |
[5] | 江锦波, 滕黎明, 孟祥铠, 李纪云, 彭旭东. 基于多变量摄动的超临界CO2干气密封动态特性[J]. 化工学报, 2021, 72(4): 2190-2202. |
[6] | 商浩, 陈源, 李孝禄, 王冰清, 李运堂, 彭旭东. 膜厚扰动下的非线性效应对干气密封性能影响研究[J]. 化工学报, 2021, 72(4): 2213-2222. |
[7] | 于辰,江锦波,赵文静,李纪云,彭旭东,王玉明. 基于微段组合的干气密封端面型槽结构模型及其参数影响[J]. 化工学报, 2021, 72(10): 5294-5309. |
[8] | 严如奇, 洪先志, 包鑫, 徐洁, 丁雪兴. 超临界二氧化碳干气密封相态分布规律与密封性能研究[J]. 化工学报, 2020, 71(8): 3681-3690. |
[9] | 范瑜, 宋鹏云, 许恒杰. 水蒸气润滑干气密封启动过程研究[J]. 化工学报, 2020, 71(8): 3671-3680. |
[10] | 陈维, 宋鹏云, 许恒杰, 孙雪剑. 含杂质二氧化碳实际气体干气密封性能研究[J]. 化工学报, 2020, 71(5): 2215-2229. |
[11] | 车健, 江锦波, 李纪云, 彭旭东, 马艺, 王玉明. 节流孔出气模式对静压干气密封稳态性能影响[J]. 化工学报, 2020, 71(4): 1734-1743. |
[12] | 沈伟, 彭旭东, 江锦波, 李纪云. 高速超临界二氧化碳干气密封实际效应影响分析[J]. 化工学报, 2019, 70(7): 2645-2659. |
[13] | 徐奇超, 江锦波, 彭旭东, 李纪云, 王玉明. 基于遗传算法的干气密封双向槽统一模型与参数优化[J]. 化工学报, 2019, 70(3): 995-1005. |
[14] | 江锦波, 陈源, 赵文静, 李纪云, 彭旭东. 干气密封螺旋槽几何参数优选交互影响[J]. 化工学报, 2018, 69(4): 1518-1527. |
[15] | 许恒杰, 宋鹏云, 毛文元, 邓强国, 孙雪剑. 层流状态下高压高转速二氧化碳干气密封的惯性效应分析[J]. 化工学报, 2018, 69(10): 4311-4323. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||