化工学报 ›› 2019, Vol. 70 ›› Issue (6): 2051-2059.DOI: 10.11949/0438-1157.20181187
收稿日期:
2018-10-12
修回日期:
2019-03-26
出版日期:
2019-06-05
发布日期:
2019-06-05
通讯作者:
肖忠良
作者简介:
<named-content content-type="corresp-name">宋刘斌</named-content>(1981—),男,博士,讲师,<email>kjcsongliubin@163.com</email>
基金资助:
Liubin SONG(),Anxian LI,Zhongliang XIAO(),Zhenzhen CHI,Zhong CAO
Received:
2018-10-12
Revised:
2019-03-26
Online:
2019-06-05
Published:
2019-06-05
Contact:
Zhongliang XIAO
摘要:
在锂离子电池电极材料研究中,第一性原理计算能在理论上协助解释实验结果,为材料的合成和性能改进提供理论依据。目前第一性原理计算在锂离子电池电极材料中的应用主要集中在正极材料磷酸铁锂和层状氧化物LiMO2(M=Ni, Co, Mn, Al等)材料中,对热门三元材料,特别是三元材料改性前后界面结构变化的研究较少。围绕密度泛函理论,综述了其在电极材料工作电压、电子传导性和离子扩散性、结构稳定性、储锂容量的计算以及热力学性能预测及解释等方面的应用,对较为集中的研究方向的进展进行阐述和总结,为用第一性原理进一步研究LiNi x Co y Mn1- x - y O2复合材料提供借鉴。
中图分类号:
宋刘斌, 黎安娴, 肖忠良, 池振振, 曹忠. 第一性原理在锂离子电池电极材料中的应用研究[J]. 化工学报, 2019, 70(6): 2051-2059.
Liubin SONG, Anxian LI, Zhongliang XIAO, Zhenzhen CHI, Zhong CAO. Application research status of first-principles in lithium-ion battery electrode materials[J]. CIESC Journal, 2019, 70(6): 2051-2059.
图4 LiMO2结构的原子构型,其中M 为过渡金属(Ni,Co和Mn),以及每个缺陷的示意结构(a),Li空位(VLi)(b),氧空位(VO)(c),过量的Ni(NiLi)(d),Li / Ni混排(LiNi-NiLi)(e)和Ni迁移(Nimig)(f)[63]
Fig.4 Atomic configurations for structure of LiMO2(a), where M= transition metals (Ni, Co,and Mn), and schematic structures for each of defects, Li vacancies (VLi)(b), oxygen vacancy(VO)(c), excess Ni (NiLi)(d), Li/Ni exchange (LiNi-NiLi)(e), and Ni migration (Nimig)(f)[63]
1 | 田萌 . 锂离子电池新型正极材料的第一性原理研究[D]. 北京: 中国科学院大学(中国科学院物理研究所), 2017. |
Tian M . First-principles calculations on new cathode materials for lithium-ion batteries[D]. Beijing: The University of Chinese Academy of Sciences (Institute of Physics Chinese Academy of Sciences), 2017. | |
2 | Liu E , Wang J , Shi C , et al . Anomalous interfacial lithium storage in graphene/TiO2 for lithium ion batteries[J]. ACS Applied Materials & Interfaces, 2014, 6(20): 18147-18151. |
3 | Fei Z , Cococcioni M , Kang K , et al . The Li intercalation potential of LiMPO4 and LiMSiO4 olivines with M = Fe, Mn, Co, Ni[J]. Electrochemistry Communications, 2004, 6(11): 1144-1148. |
4 | 陈昌国, 刘艳, 司玉军, 等 . 锂离子电池正极材料LiFePO4的密度泛函研究[J]. 分子科学学报, 2007, 23(4): 248-252. |
Chen C G , Liu Y , Si Y J , et al . Density functional study of cathode material LiFePO4 for lithium ion battery[J]. Journal of Molecular Science, 2007, 23(4): 248-252. | |
5 | Hassan A S , Navulla A , Meda L , et al . Molecular mechanisms for the lithiation of ruthenium oxide nanoplates as lithium-ion battery anode materials: an experimentally motivated computational study[J]. Journal of Physical Chemistry C, 2015, 119(18): 9705-9713. |
6 | Lv Y , Chen B , Zhao N , et al . Interfacial effect on the electrochemical properties of the layered graphene/metal sulfide composites as anode materials for Li-ion batteries[J]. Surface Science, 2016, 651: 10-15. |
7 | Iddir H , Benedek R . First-principles analysis of phase stability in layered–layered composite cathodes for lithium-ion batteries[J]. Chemistry of Materials, 2014, 26(7): 2407-2413. |
8 | Gao Y , Wang X , Ma J , et al . Selecting substituent elements for Li-rich Mn-based cathode materials by density functional theory (DFT) calculations[J]. Chemistry of Materials, 2015, 27(9): 3456-3461. |
9 | Wang T , Zhao N , Shi C , et al . Interface and doping effects on Li ion storage behavior of graphene/Li2O[J]. Journal of Physical Chemistry C, 2017, 121(36): 19559-19567. |
10 | 薛雷, 张秀娟, 张淑凯 . 锂离子电池层状正极材料第一性原理计算新进展[J]. 材料导报, 2016, 30(1): 122-127. |
Xue L , Zhang X J , Zhang S K . New progresses of first-principles calculation on layered cathode materials for lithium ion batteries[J]. Material Review, 2016, 30(1): 122-127. | |
11 | 沈丁, 李犇, 杨绍斌, 等 . 锂离子电池聚阴离子型正极材料的第一性原理研究进展[J]. 化工进展, 2013, 32(4): 837-841. |
Shen D , Li B , Yang S B , et al . Research progress of first principle of polyanion type cathode material for lithium-ion battery[J]. Chemical Industry and Engineering Progress, 2013, 32(4): 837-841. | |
12 | 徐宇虹, 尹鸽平, 左朋建 . 锂离子电池正极材料的第一性原理[J]. 化学进展, 2008, 20(11): 1827-1833. |
Xu Y H , Yin G P , Zuo P J . First principle calculations of cathode in Li-ion batteries[J]. Chemical Industry and Engineering Progress, 2008, 20(11): 1827-1833. | |
13 | 张培新, 陈建华, 魏群 . 掺杂材料分子模拟与计算[M]. 北京: 科学出版社, 2012. |
Zhang P X , Chen J H , Wei Q . Molecular Simulation and Calculation of Doping Materials[M]. Beijing: Science Press, 2012. | |
14 | 胡英, 刘洪来 . 密度泛函理论[M]. 北京: 科学出版社, 2016. |
Hu Y, Liu H L, Density Functional Theory[M]. Beijing: Science Press, 2016. | |
15 | Hohenberg P , Kohn W . Inhomogeneous electron gas[J]. Phys. Rev., 1964, 136(3B): B864–B871. |
16 | 林梦海 . 量子化学计算方法与应用[M]. 北京: 科学出版社, 2005. |
Lin M H . Quantum Chemistry Calculation Methods and Applications[M]. Beijing: Science Press, 2005. | |
17 | Kohn W , Sham L J . Self-consistent equations including exchange and correlation effects[J]. Physical Review, 2008, 140(4A): A1133-A1138. |
18 | Perdew J P , Burke K , Ernzerhof M . Generalized gradient approximation made simple[J]. Phys. Rev. Lett., 1996, 77: 3865. |
19 | Perdew J P , Wang Y . Accurate and simple analytic representation of the electron-gas correlation energy[J]. Physical Review B Condensed Matter, 1992, 45(23): 13244. |
20 | 宋刘斌 . 锂离子电池的热电化学研究及其电极材料的计算与模拟[D]. 长沙: 中南大学, 2013. |
Song L B . The thermo-eletrochemical study on lithium ion batteries and numerical calculation and simulation of electrode material in lithium ion batteries[D]. Changsha: Central South University, 2013. | |
21 | Kresse G , Furthmüller J . Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys. Rev. B Condens Matter, 1996, 54(16): 11169-11186. |
22 | Kresse G , Joubert D . From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys. Rev. B, 1999, 59(3): 1758-1775. |
23 | Blöchl P . Projector augmented-wave method[J]. Phys. Rev. B Condens Matter, 1994, 50(24):17953-17979. |
24 | 孙超 . 基于密度泛函理论的材料设计:VO2相变温度的调控和LiFePO4电导率的提高[D]. 上海: 上海大学, 2015. |
Sun C . Materials design based on density functional theory: modulation of transition temperature of VO2 and improvement of conductivity of LiFePO4 [D]. Shanghai: Shanghai University, 2015. | |
25 | Payne M C , Teter M P , Allan D C , et al . Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients[J]. Reviews of Modern Physics(United States), 1992, 64(4): 1045-1097. |
26 | 孔婷婷 . 钛锂铝类水滑石/炭复合材料的制备及CO2吸附与光催化研究[D]. 西安: 西安科技大学, 2017. |
Kong T T . Preparation and CO2 adsorption, photocatalysis performance of Ti/Li/Al-LDHs/coke composite[D]. Xi an: Xi an University of Science and Technology, 2017. | |
27 | 张福州 . 广义层错能的第一性原理计算及定域性分析[D]. 重庆: 重庆大学, 2008. |
Zhang F Z . Generalized stacking fault energy calculation from first-principles and analysis of local approximation[D]. Chongqing: Chongqing University, 2008. | |
28 | 温亚娟 . 典型热电材料的第一原理计算[D]. 杭州: 杭州电子科技大学, 2014. |
Wen Y J . The first principle studies of several typical thermoelectric materials[D]. Hangzhou: Hangzhou Dianzi University, 2014. | |
29 | Nosengo N . The material code[J]. Nature, 2016, 533(7602): 22. |
30 | Umebayashi Y , Mitsugi T , Fukuda S , et al . Lithium ion solvation in room-temperature ionic liquids involving bis(trifluoromethanesulfonyl) imide anion studied by Raman spectroscopy and DFT calculations[J]. Journal of Physical Chemistry B, 2007, 111(45): 13028. |
31 | Nakayama M , Yamada S , Jalem R , et al . Density functional studies of olivine-type LiFePO4, and NaFePO4, as positive electrode materials for rechargeable lithium and sodium ion batteries[J]. Solid State Ionics, 2016, 286: 40-44. |
32 | Xiao R , Li H , Chen L . Density functional investigation on Li2MnO3 [J]. Chemistry of Materials, 2012, 24(21): 4242-4251. |
33 | Anisimov V I . First-principles calculations of the electronic structure and spectra of strongly correlated systems: LDA+U method[J]. Journal of Physics Condensed Matter, 1995, 9(35): 7359-7367. |
34 | Kong F , Longo R C , Min S P , et al . Ab initio study of doping effects on LiMnO2 and Li2MnO3 cathode materials for Li-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(16): 8489-8500. |
35 | Reimers J N . Can first principles calculations aid in lithium-ion battery design?[J]. Journal of Power Sources, 1995, 54(1): 16-19. |
36 | Aydinol M K , Kohan A F , Ceder G . Ab initio calculation of the intercalation voltage of lithium-transition-metal oxide electrodes for rechargeable batteries[J]. Journal of Power Sources, 1997, 68(2): 664-668. |
37 | Lu H L , Sun S R . Polyimide electrode materials for Li-ion batteries via dispersion-corrected density functional theory[J]. Computational Materials Science, 2018, 146: 119-125. |
38 | Aydinol M K , Kohan A F , Ceder G , et al . Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides[J]. Physical Review B Condensed Matter, 1997, 56(3): 1353-1365. |
39 | Shi S , Ouyang C Y , Lei M , et al . Effect of Mg-doping on the structural and electronic properties of LiCoO2: a first-principles investigation[J]. Journal of Power Sources, 2007, 171(2): 908-912. |
40 | Najafi M . Application of C60, C72 and carbon nanotubes as anode for lithium-ion batteries: a DFT study[J]. Materials Chemistry and Physics, 2017, 195: 195-198. |
41 | Hao S , Zhao N , Shi C , et al . Enhanced electrochemical properties of LiCo0.5Ni0.5O2, by Ti-doping: a first-principle study[J]. Ceramics International, 2015, 41(2): 2294-2300. |
42 | 宋怀河, 杨树斌, 陈晓红 . 影响锂离子电池高倍率充放电性能的因素[J]. 电源技术, 2009, 33(6): 443-448. |
Song H H , Yang S B , Chen X H . Factors affecting high rate charge and discharge performance of lithium ion batteries[J]. Chinese Journal of Power Sources, 2009, 33(6): 443-448. | |
43 | Shi S , Liu L , Ouyang C Y , et al . Enhancement of electronic conductivity of LiFePO4 by Cr doping and its identification by first-principles calculations[J]. Phys. Rev. B, 2003, 68: 195108. |
44 | Ouyang C Y , Shi S Q , Wang Z X , et al . First-principles study of Li ion diffusion in LiFePO4 [J]. Phys. Rev. B, 2004, 69: 104303. |
45 | Ouyang C Y , Shi S Q , Wang Z X , et al . The effect of Cr doping on Li ion diffusion in LiFePO4 from first principles investigations and Monte Carlo simulations[J]. Journal of Physics-Condensed Matter, 2004, 16(13): 2265. |
46 | 王兆翔, 陈立泉, 黄学杰 . 锂离子电池正极材料的结构设计与改性[J]. 化学进展, 2011, 23(2/3): 284-301. |
Wang Z X , Chen L Q , Huang X J . First principle calculations of cathode in Li-ion batteries[J]. Progress in Chemistry, 2011, 23(2/3): 284-301. | |
47 | Ouyang C Y , Wang D Y , Shi S Q , et al . First principles study on Na x Li1− x FePO4 as cathode material for rechargeable lithium batteries[J]. Chinese Physics Letters, 2006, 23(1): 61-64. |
48 | 欧阳楚英 . 锂离子电池正极材料离子动力学性能研究[D]. 北京: 中国科学院物理研究所, 2005. |
Ouyang C Y . Study on ion dynamics of cathode materials for lithium ion batteries[D]. Beijing: Institute of Physics Chinese Academy of Sciences, 2005. | |
49 | Gao L , Xu Z , Zhang S . The co-doping effects of Zr and Co on structure and electrochemical properties of LiFePO4, cathode materials[J]. Journal of Alloys & Compounds, 2017, 739: 529-535. |
50 | Yang M Y , Kim S , Kim K , et al . Role of ordered Ni atoms in Li layers for Li-rich layered cathode materials[J]. Advanced Functional Materials, 2017, 27(35): 1700982. |
51 | 高玉梅, 杨文鑫, 刘萍 . LiNi0.85- x Co x Mn0.15O2电化学性能的第一性原理研究[J]. 华南师范大学学报(自然科学版), 2017, 49(3): 7-10. |
Gao Y M , Yang W X , Liu P . First-principles investigation on electrochemical performance of LiNi0.8- x Co x Mn0.15O2 [J]. Journal of South China Normal University (Natural Science Edition), 2017, 49(3): 7-10. | |
52 | Dixit M , Markovsky B , Aurbach D , et al . Unraveling the effects of Al doping on the electrochemical properties of LiNi0.5Co0.2Mn0.3O2 using first principles[J]. Journal of the Electrochemical Society, 2017, 164(1): A6359-A6365. |
53 | Bianchini F , Fjellvåg H , Vajeeston P . A first-principle investigation of the Li diffusion mechanism in the super-ionic conductor lithium orthothioborate Li3BS3 structure[J]. Materials Letters, 2018, 219: 186-189. |
54 | Urquiza M L , Otero M , Luque G L , et al . First-principles studies of silicon underpotential deposition on defective graphene and its relevance for lithium-ion battery materials[J]. Electrochimica Acta, 2016, 208: 92-101. |
55 | Rahaman O , Mortazavi B , Rabczuk T . A first-principles study on the effect of oxygen content on the structural and electronic properties of silicon suboxide as anode material for lithium ion batteries[J]. Journal of Power Sources, 2016, 307: 657-664. |
56 | Liao N , Zheng B , Zhou H , et al . Effect of carbon segregation on performance of inhomogeneous SiC y O6/5 as anode materials for lithium-ion battery: a first-principles study[J]. Journal of Power Sources, 2016, 334: 39-43. |
57 | Luo D , Hou X , Yang J , et al . First principles studies on the electronics structures of (Li0.75Na0.25)(Fe0.75Mn0.25)PO4 cathode materials[J]. Rare Metal Materials & Engineering, 2012, 41(8): 1323-1326. |
58 | Chen H , Dawson J , Harding J . Effects of cationic substitution on structural defects in layered cathode materials LiNiO2 [J]. Journal of Materials Chemistry A, 2014, 2(21): 7988-7996. |
59 | Huang Z F , Zhang H Z , Wang C Z , et al . First-principles investigation on extraction of lithium ion from monoclinic LiMnO2 [J]. Solid State Sciences, 2010, 40(15): 271-274. |
60 | Hoang K . First-principles theory of doping in layered oxide electrode materials[J]. Phys. Rev. Materials, 2017, 1(7): 075403. |
61 | Kim S , Hegde V I , Yao Z , et al . First-principles study of lithium cobalt spinel oxides: correlating structure and electrochemistry[J]. ACS Appl. Mater. Interfaces, 2018, 10(16): 13479-13490. |
62 | Vallverdu G , Minvielle M , Andreu N , et al . First principle study of the surface reactivity of layered lithium oxides LiMO2 (M = Ni, Mn, Co)[J]. Surface Science, 2016, 649: 46-55. |
63 | Min K , Seo S W , Song Y Y , et al . A first-principles study of the preventive effects of Al and Mg doping on the degradation in LiNi0.8Co0.1Mn0.1O2 cathode materials[J]. Physical Chemistry Chemical Physics, 2016, 19(3): 1762. |
64 | 王伟东, 仇卫华, 丁倩倩 . 锂离子电池三元材料[M]. 北京: 化学工业出版社, 2015. |
Wang W D , Qiu W H , Ding Q Q . Lithium-ion Battery Ternary Materials[M]. Beijing: Chemical Industry Press, 2015. | |
65 | 夏君磊, 赵世玺 . 锂离子电池电极材料的设计方法及应用[J]. 材料导报, 2001, 15(9): 33-35. |
Xia J L , Zhao S X . Design method and application of passive electrode material for Li-ion battery[J]. Material Review, 2001, 15(9): 33-35. | |
66 | Ullah S , Denis P A , Sato F . Beryllium doped graphene as an efficient anode material for lithium-ion batteries with significantly huge capacity: a DFT study[J]. Applied Materials Today, 2017, 9: 333-340. |
67 | Momeni M J , Mousavi-Khoshdel M , Targholi E . First-principles investigation of adsorption and diffusion of Li on doped silicenes: prospective materials for lithium-ion batteries[J]. Materials Chemistry & Physics, 2017, 192: 125-130. |
68 | Cui Y , Zhao Y , Chen H , et al . First-principles study of MoO3/graphene composite as cathode material for high-performance lithium-ion batteries[J]. Applied Surface Science, 2018, 433: 1083-1093. |
69 | Chen H , Zhang W , Tang X Q , et al . First principles study of P-doped borophene as anode materials for lithium ion batteries[J]. Applied Surface Science, 2018, 427: 198-205. |
70 | Wang H , Wu M , Lei X , et al . Siligraphene as a promising anode material for lithium-ion batteries predicted from first-principles calculations[J]. Nano Energy, 2018, 49: 67-76. |
71 | Jiang H R , Zhao T S , Liu M , et al . Two-dimensional SiS as a potential anode material for lithium-based batteries: a first-principles study[J]. Journal of Power Sources, 2016, 331: 391-399. |
72 | Cho E , Seo S W , Min K . Theoretical prediction of surface stability and morphology of LiNiO2 cathode for Li ion battery[J]. ACS Applied Materials & Interfaces, 2017, 9(38): 33257-33266. |
73 | Fan L , Zhuang H L , Gao L , et al . Regulating Li deposition at artificial solid electrolyte interphases[J]. Journal of Materials Chemistry A, 2017, 5(7): 3483-3492. |
74 | Vajeeston P . Ionic conductivity enhancement by particle size reduction in Li2FeSiO4 [J]. Materials Letters, 2018, 218: 313-316. |
75 | 龚鑫 . 第一性原理计算研究锂离子电池正极材料LiCoO2的热力学性能[D]. 南昌: 江西师范大学, 2014. |
Gong X . First-principles calculation study of the thermodynamic properties of LiCoO2 cathode material for lithium ion batteries[D]. Nanchang: Jiangxi Normal University, 2014. | |
76 | 刘兆君 . 锂离子电池电极材料中热力学和动力学问题的第一性原理研究[D]. 北京: 中国科学院物理研究所, 2010. |
Liu Z J . First-principles study of thermodynamic and kinetic problems in lithium ion battery electrode materials[D]. Beijing: Institute of Physics Chinese Academy of Sciences, 2010. | |
77 | Ali S , Rashid M , Hassan M , et al . Ab-initio study of electronic, magnetic and thermoelectric behaviors of LiV2O4, and LiCr2O4, using modified Becke-Johson (mBJ) potential[J]. Physica B Condensed Matter, 2018, 537: 329-335. |
[1] | 康飞, 吕伟光, 巨锋, 孙峙. 废锂离子电池放电路径与评价研究[J]. 化工学报, 2023, 74(9): 3903-3911. |
[2] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[3] | 王志龙, 杨烨, 赵真真, 田涛, 赵桐, 崔亚辉. 搅拌时间和混合顺序对锂离子电池正极浆料分散特性的影响[J]. 化工学报, 2023, 74(7): 3127-3138. |
[4] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[5] | 李靖, 沈聪浩, 郭大亮, 李静, 沙力争, 童欣. 木质素基碳纤维复合材料在储能元件中的应用研究进展[J]. 化工学报, 2023, 74(6): 2322-2334. |
[6] | 肖忠良, 尹碧露, 宋刘斌, 匡尹杰, 赵亭亭, 刘成, 袁荣耀. 废旧锂离子电池回收工艺研究进展及其安全风险分析[J]. 化工学报, 2023, 74(4): 1446-1456. |
[7] | 杜江龙, 杨雯棋, 黄凯, 练成, 刘洪来. 复合相变材料/空冷复合式锂离子电池模块散热性能[J]. 化工学报, 2023, 74(2): 674-689. |
[8] | 程伟江, 汪何琦, 高翔, 李娜, 马赛男. 锂离子电池硅基负极电解液成膜添加剂的研究进展[J]. 化工学报, 2023, 74(2): 571-584. |
[9] | 杜峰, 尹思琦, 罗辉, 邓文安, 李传, 黄振薇, 王文静. H2在Mo x S y 团簇上吸附解离的尺寸效应研究[J]. 化工学报, 2022, 73(9): 3895-3903. |
[10] | 钟磊, 邱学青, 张文礼. 木质素衍生炭在碱金属离子电池负极中的研究进展[J]. 化工学报, 2022, 73(8): 3369-3380. |
[11] | 黄凯, 王思洁, 苏海萍, 练成, 刘洪来. 石墨烯层间距调控抑制锂枝晶生长的第一性原理研究[J]. 化工学报, 2022, 73(8): 3501-3510. |
[12] | 俞夏琪, 冯格, 赵金燕, 李嘉远, 邓声威, 郑靖楠, 李雯雯, 王亚秋, 沈榄, 刘旭, 徐威威, 王建国, 王式彬, 姚子豪, 毛成立. 基体(TDI-TMP-T313)与氧化剂(AP)相互作用的第一性原理研究[J]. 化工学报, 2022, 73(8): 3511-3517. |
[13] | 赵继昊, 唐伟强, 徐小飞, 赵双良, 贺炅皓. 高分子复合材料中键合剂在不同纳米填料表面的吸附能计算[J]. 化工学报, 2022, 73(7): 3174-3181. |
[14] | 胡华坤, 薛文东, 霍思达, 李勇, 蒋朋. 锂离子电池电解液SEI成膜添加剂的研究进展[J]. 化工学报, 2022, 73(4): 1436-1454. |
[15] | 杨伟, 王昱杰, 方凯斌, 邹汉波, 陈胜洲, 刘自力. Co-Mn比例调控对LiNi0.8Co0.10-y Mn0.05+y Al0.05O2材料性能影响探究[J]. 化工学报, 2022, 73(12): 5615-5624. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||