化工学报 ›› 2022, Vol. 73 ›› Issue (9): 3895-3903.DOI: 10.11949/0438-1157.20220539
杜峰(), 尹思琦, 罗辉, 邓文安(), 李传, 黄振薇, 王文静
收稿日期:
2022-04-15
修回日期:
2022-06-30
出版日期:
2022-09-05
发布日期:
2022-10-09
通讯作者:
邓文安
作者简介:
杜峰(1972—),男,博士,副教授,Dufeng@upc.edu.cn
基金资助:
Feng DU(), Siqi YIN, Hui LUO, Wenan DENG(), Chuan LI, Zhenwei HUANG, Wenjing WANG
Received:
2022-04-15
Revised:
2022-06-30
Online:
2022-09-05
Published:
2022-10-09
Contact:
Wenan DENG
摘要:
浆态床加氢工艺可以处理不同来源的劣质重油、渣油,氢气的活化是重油加氢处理过程中发生的主要反应之一。钼基催化剂的分散性是影响重油加氢活性的关键因素。构建了Mo7S15、Mo12S26、Mo18S39、Mo25S54和Mo33S71团簇,利用密度泛函理论研究了团簇自身的稳定性、活性以及H2在不同尺寸团簇上的吸附与解离过程。结果发现,在目前所建立的团簇中,其尺寸越小,结合能越低,最高占据分子轨道-最低未占分子轨道(HOMO-LUMO)能隙值越小,团簇稳定性越弱,活性越强。H2在簇上的稳定吸附位点为边缘位点。随团簇尺寸增大,吸附能分别为-64.25、-34.60、-34.14、-7.20、-6.82 kJ/mol,吸附能绝对值减小,氢气分子与团簇的相互作用减弱,并且解离能逐渐增大,分别为13.76、33.14、53.64、60.75、64.47 kJ/mol。目前的结果表明,团簇尺寸越小,氢气的吸附解离越容易,显示出更高的活性。
中图分类号:
杜峰, 尹思琦, 罗辉, 邓文安, 李传, 黄振薇, 王文静. H2在Mo x S y 团簇上吸附解离的尺寸效应研究[J]. 化工学报, 2022, 73(9): 3895-3903.
Feng DU, Siqi YIN, Hui LUO, Wenan DENG, Chuan LI, Zhenwei HUANG, Wenjing WANG. Study on size effect of H2 adsorption and dissociation on Mo x S y clusters[J]. CIESC Journal, 2022, 73(9): 3895-3903.
图1 五种不同尺寸的Mo x S y 团簇模型Sc—角硫原子;Moe—边缘钼原子;Se—边缘硫原子
Fig.1 Five different sizes of Mo x S y cluster modelSc—corner sulfur atom; Moe—edge molybdenum atom; Se—edge sulfur atom
Energy | Mo | S | Mo7S15 | Mo12S26 | Mo18S39 | Mo25S54 | Mo33S71 |
---|---|---|---|---|---|---|---|
E/eV | -1855.00 | -10832.37 | -175589.75 | -304118.30 | -456185.94 | -631793.35 | -830940.07 |
Eb/eV | — | — | 5.42 | 5.70 | 5.85 | 5.95 | 6.03 |
表1 Mo x S y 团簇、钼原子、硫原子的能量E及不同尺寸Mo x S y (x=7,12,18,25,33; y=15,26,39,54,71)团簇的平均结合能Eb
Table 1 Energy E of Mo x S y clusters, molybdenum atoms, sulfur atoms and binding energies Eb of Mo x S y (x=7,12,18,25,33; y=15,26,39,54,71) clusters with different sizes
Energy | Mo | S | Mo7S15 | Mo12S26 | Mo18S39 | Mo25S54 | Mo33S71 |
---|---|---|---|---|---|---|---|
E/eV | -1855.00 | -10832.37 | -175589.75 | -304118.30 | -456185.94 | -631793.35 | -830940.07 |
Eb/eV | — | — | 5.42 | 5.70 | 5.85 | 5.95 | 6.03 |
System | E(HOMO)/eV | E(LUMO)/eV | Eg/eV |
---|---|---|---|
Mo7S15 | -5.539 | -5.431 | 0.108 |
Mo12S26 | -5.409 | -5.289 | 0.120 |
Mo18S39 | -5.469 | -5.337 | 0.132 |
Mo25S54 | -5.612 | -5.266 | 0.346 |
Mo33S71 | -5.814 | -5.280 | 0.534 |
表2 Mo x S y (x=7,12,18,25,33; y=15,26,39,54,71) 团簇的HOMO-LUMO能隙值Eg
Table 2 HOMO-LUMO energy gap values of Mo x S y (x=7,12,18,25,33; y=15,26,39,54,71) cluster Eg
System | E(HOMO)/eV | E(LUMO)/eV | Eg/eV |
---|---|---|---|
Mo7S15 | -5.539 | -5.431 | 0.108 |
Mo12S26 | -5.409 | -5.289 | 0.120 |
Mo18S39 | -5.469 | -5.337 | 0.132 |
Mo25S54 | -5.612 | -5.266 | 0.346 |
Mo33S71 | -5.814 | -5.280 | 0.534 |
Species | Corners | Edges | |||||
---|---|---|---|---|---|---|---|
r(H—H)/nm | r(H—S)/nm | Eads/(kJ/mol) | r(H—H)/nm | r(H—Mo)/nm | r(H—S)/nm | Eads/(kJ/mol) | |
Mo7S15H2 | 0.0772 | 0.292 | -48.58 | 0.0773 | 0.220 | 0.271 | -64.25 |
Mo12S26H2 | 0.0749 | 0.359 | -14.62 | 0.0769 | 0.228 | 0.273 | -34.60 |
Mo18S39H2 | 0.0748 | 0.362 | -14.26 | 0.0763 | 0.231 | 0.275 | -34.14 |
Mo25S54H2 | 0.0748 | 0.365 | -7.13 | 0.0750 | 0.311 | 0.297 | -7.20 |
Mo33S71H2 | 0.0748 | 0.370 | -5.59 | 0.0748 | 0.332 | 0.319 | -6.82 |
表3 氢气在不同尺寸团簇边缘位和角位的吸附结构参数、吸附能(Eads)
Table 3 Adsorption structure parameters and adsorption energy (Eads) of hydrogen at the edges and corners of clusters with different sizes
Species | Corners | Edges | |||||
---|---|---|---|---|---|---|---|
r(H—H)/nm | r(H—S)/nm | Eads/(kJ/mol) | r(H—H)/nm | r(H—Mo)/nm | r(H—S)/nm | Eads/(kJ/mol) | |
Mo7S15H2 | 0.0772 | 0.292 | -48.58 | 0.0773 | 0.220 | 0.271 | -64.25 |
Mo12S26H2 | 0.0749 | 0.359 | -14.62 | 0.0769 | 0.228 | 0.273 | -34.60 |
Mo18S39H2 | 0.0748 | 0.362 | -14.26 | 0.0763 | 0.231 | 0.275 | -34.14 |
Mo25S54H2 | 0.0748 | 0.365 | -7.13 | 0.0750 | 0.311 | 0.297 | -7.20 |
Mo33S71H2 | 0.0748 | 0.370 | -5.59 | 0.0748 | 0.332 | 0.319 | -6.82 |
图2 不同尺寸Mo x S y 团簇边缘位点处Mo 4d、S 3p与H 1s轨道投影态密度图:(a) Mo7S15团簇; (b) Mo12S26团簇; (c) Mo18S39团簇; (d) Mo25S54团簇; (e) Mo33S71团簇
Fig.2 PDOS of Mo 4d, S 3p and H 1s orbitals at edge sites of Mo x S y clusters with different sizes:(a) Mo7S15 clusters; (b) Mo12S26 clusters; (c) Mo18S39 clusters; (d) Mo25S54 clusters; (e) Mo33S71 clusters
图3 H2在Mo7S15团簇上解离的初态(Mo7S15H2-R)、过渡态(Mo7S15H2-TS)及末态(Mo7S15H2-P)的优化构型
Fig.3 The optimized configuration of initial state (Mo7S15H2-R), transition state (Mo7S15H2-TS) and final state (Mo7S15H2-P) of H2 dissociation on Mo7S15 clusters
图4 氢气分子在Mo x S y (x=7,12,18,25,33; y=15,26,39,54,71)团簇上的吸附解离过程:(a) Mo7S15团簇; (b) Mo12S26团簇; (c) Mo18S39团簇; (d) Mo25S54团簇; (e) Mo33S71团簇
Fig.4 Adsorption and dissociation process of hydrogen molecules on Mo x S y (x=7,12,18,25,33; y=15,26,39,54,71) clusters:(a) Mo7S15 clusters; (b) Mo12S26 clusters; (c) Mo18S39 clusters; (d) Mo25S54 clusters; (e) Mo33S71 clusters
Species | r(H—H) /nm | r(H—Mo)/nm | r(H—S) /nm | Ea/ (kJ/mol) |
---|---|---|---|---|
Mo7S15H2-R | 0.0773 | 0.2200 | 0.2710 | 13.76 |
Mo7S15H2-TS | 0.1084 | 0.1824 | 0.2553 | |
Mo7S15H2-P | 0.2241 | 0.1693 | 0.1362 | |
Mo12S26H2-R | 0.0769 | 0.2280 | 0.2730 | 33.14 |
Mo12S26H2-TS | 0.1035 | 0.1828 | 0.1593 | |
Mo12S26H2-P | 0.2310 | 0.1690 | 0.1364 | |
Mo18S39H2-R | 0.0763 | 0.2310 | 0.2750 | 53.64 |
Mo18S39H2-TS | 0.1102 | 0.1809 | 0.1517 | |
Mo18S39H2-P | 0.2252 | 0.1685 | 0.1362 | |
Mo25S54H2-R | 0.0750 | 0.3110 | 0.2970 | 60.75 |
Mo25S54H2-TS | 0.1096 | 0.1807 | 0.1531 | |
Mo25S54H2-P | 0.2252 | 0.1688 | 0.1361 | |
Mo33S71H2-R | 0.0748 | 0.3320 | 0.3190 | 64.47 |
Mo33S71H2-TS | 0.1045 | 0.1827 | 0.1576 | |
Mo33S71H2-P | 0.2292 | 0.1690 | 0.1364 |
表4 氢气在Mo x S y (x=7,12,18,25,33; y=15,26,39,54,71)团簇上的解离能垒Ea以及初态(R)、过渡态(TS)、末态(P)的构型参数
Table 4 Dissociation barriers Ea of hydrogen on Mo x S y (x=7,12,18,25,33; y=15,26,39,54,71) clusters and configuration parameters of initial state(R), transition states(TS) and final state(P)
Species | r(H—H) /nm | r(H—Mo)/nm | r(H—S) /nm | Ea/ (kJ/mol) |
---|---|---|---|---|
Mo7S15H2-R | 0.0773 | 0.2200 | 0.2710 | 13.76 |
Mo7S15H2-TS | 0.1084 | 0.1824 | 0.2553 | |
Mo7S15H2-P | 0.2241 | 0.1693 | 0.1362 | |
Mo12S26H2-R | 0.0769 | 0.2280 | 0.2730 | 33.14 |
Mo12S26H2-TS | 0.1035 | 0.1828 | 0.1593 | |
Mo12S26H2-P | 0.2310 | 0.1690 | 0.1364 | |
Mo18S39H2-R | 0.0763 | 0.2310 | 0.2750 | 53.64 |
Mo18S39H2-TS | 0.1102 | 0.1809 | 0.1517 | |
Mo18S39H2-P | 0.2252 | 0.1685 | 0.1362 | |
Mo25S54H2-R | 0.0750 | 0.3110 | 0.2970 | 60.75 |
Mo25S54H2-TS | 0.1096 | 0.1807 | 0.1531 | |
Mo25S54H2-P | 0.2252 | 0.1688 | 0.1361 | |
Mo33S71H2-R | 0.0748 | 0.3320 | 0.3190 | 64.47 |
Mo33S71H2-TS | 0.1045 | 0.1827 | 0.1576 | |
Mo33S71H2-P | 0.2292 | 0.1690 | 0.1364 |
31 | Bacaud R. Dispersed phase catalysis: past and future. Celebrating one century of industrial development[J]. Fuel, 2014, 117: 624-632. |
32 | Kim K D, Lee Y K. Active phase of dispersed MoS2 catalysts for slurry phase hydrocracking of vacuum residue[J]. Journal of Catalysis, 2019, 369: 111-121. |
1 | Energy Information Administration U.S.. Annual energy outlook 2020 with projections to 2050[R]. U. S. Department of Energy: Washington, DC, 2020. |
2 | 刘美, 刘金东, 张树广, 等. 悬浮床重油加氢裂化技术进展[J]. 应用化工, 2017, 46(12): 2435-2440. |
Liu M, Liu J D, Zhang S G, et al. Advances of heavy oil hydrocracking in suspended bed[J]. Applied Chemical Industry, 2017, 46(12): 2435-2440. | |
3 | Angeles M J, Leyva C, Ancheyta J, et al. A review of experimental procedures for heavy oil hydrocracking with dispersed catalyst[J]. Catalysis Today, 2014, 220: 274-294. |
4 | Al-Attas T A, Ali S A, Zahir M H, et al. Recent advances in heavy oil upgrading using dispersed catalysts[J]. Energy & Fuels, 2019, 33(9): 7917-7949. |
5 | Nguyen M T, Nguyen N T, Cho J, et al. A review on the oil-soluble dispersed catalyst for slurry-phase hydrocracking of heavy oil[J]. Journal of Industrial & Engineering Chemistry, 2016,43(25): 1-12. |
6 | Varakin A N, Mozhaev A V, Pimerzin A A, et al. Toward HYD/DEC selectivity control in hydrodeoxygenation over supported and unsupported Co(Ni)-MoS2 catalysts. A key to effective dual-bed catalyst reactor for co-hydroprocessing of diesel and vegetable oil[J]. Catalysis Today, 2020, 357: 556-564. |
7 | Vutolkina A, Glotov A, Baygildin I, et al. Ni-Mo sulfide nanosized catalysts from water-soluble precursors for hydrogenation of aromatics under water gas shift conditions[J]. Pure and Applied Chemistry 2020, 92: 949-966. |
8 | 屈丹龙, 李毅. 含油污泥高值转化过程Mo基负载催化剂的研究[J]. 应用化工, 2021, 50(2): 383-387. |
Qu D L, Li Y. The preparation of Mo based catalysts for high value catalytic pyrolysis of oily sludge[J]. Applied Chemical Industry, 2021,50(2): 383-387. | |
9 | Cai Z P, Ma Y D, Zhang J Y, et al. Tunable ionic liquids as oil-soluble precursors of dispersed catalysts for suspended-bed hydrocracking of heavy residues[J]. Fuel, 2022, 313: 122-130. |
10 | 戴咏川, 赵德智. 石油化学基础[M]. 北京: 中国石化出版社, 2009: 248. |
Dai Y C, Zhao D Z. Fundamentals of Petrochemical[M]. Beijing: China Petrochemical Press, 2009: 248. | |
11 | Zhou X D, Ma F Y, Wu H, et al. The effects of Fe2O3 and MoS2 on the catalytic activation pathway of hydrogen sources during direct coal liquefaction[J]. Energy, 2021, 234: 121-129. |
12 | Travert A, Nakamura H, van Santen R A, et al. Hydrogen activation on Mo-based sulfide catalysts, a periodic DFT study[J]. Journal of the American Chemical Society, 2002, 124(24): 7084-7095. |
13 | Kadiev K M, Maximov A L, Kadieva M K. The effect of MoS2 active site dispersion on suppression of polycondensation reactions during heavy oil hydroconversion[J]. Catalysts, 2021, 11(6): 676-693. |
14 | Zheng A D, Wang D, Wang L, et al. Highly efficient MoS2 nanocatalysts for slurry-phase hydrogenation of unconventional feedstocks into fuels[J]. Energy & Fuels, 2021, 35(3): 2590-2601. |
15 | 梁瑜, 赵彤, 赵斌彬, 等. WO3对Pt/α-Al2O3催化萘深度加氢的促进作用[J]. 化工学报, 2021, 72(11): 5643-5652. |
Liang Y, Zhao T, Zhao B B, et al. Promotion of WO3 species on Pt/α-Al2O3 for the deep hydrogenation of naphthalene[J]. CIESC Journal, 2021, 72(11): 5643-5652 | |
16 | Ding S J, Peng S Z, Yan Z J, et al. Charge effects on quinoline hydrodenitrogenation catalyzed by Ni-Mo-S active sites—a theoretical study by DFT calculation[J]. Petroleum Science, 2022, 19(1): 339-344. |
17 | 魏淑贤, 李阳, 葛少辉,等. MoS2催化剂活性位形成及甲硫醇脱硫机理的研究[J].高校化学工程学报, 2018, 32(4): 956-962. |
Wei S X, Li Y, Ge S H, et al. Study on active site formation of MoS2 catalysts and their desulfurization mechanism of CH3SH[J]. Journal of Chemical Engineering of Chinese Universities, 2018, 32(4): 956-962. | |
18 | Delley B. An all-electron numerical method for solving the local density functional for polyatomic molecules[J]. The Journal of Chemical Physics, 1990, 92(1): 508-517. |
19 | Delley B. Fast calculation of electrostatics in crystals and large molecules[J]. The Journal of Physical Chemistry, 1996, 100(15): 6107-6110. |
20 | Delley B. From molecules to solids with the DMol3 approach [J]. Journal of Chemical Physics, 2000, 113(18): 7756-7764. |
21 | Perdew J P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas[J]. Physical Review. B, 1986, 33(12): 8822-8824. |
22 | Delley B. Efficient and accurate expansion methods for molecules in local density models[J]. The Journal of Chemical Physics, 1982, 76(4): 1949-1960. |
23 | Perdew J P, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Physical Review B, 1992, 45(23): 13244-13249. |
24 | Moses P G, Hinnemann B, Topsøe H, et al. The hydrogenation and direct desulfurization reaction pathway in thiophene hydrodesulfurization over MoS2 catalysts at realistic conditions: a density functional study[J]. Journal of Catalysis, 2007, 248(2): 188-203. |
25 | Schweiger H, Raybaud P, Kresse G, et al. Shape and edge sites modifications of MoS2 catalytic nanoparticles induced by working conditions: a theoretical study[J]. Journal of Catalysis, 2002, 207(1): 76-87. |
26 | Joo P H, Cheng J L, Yang K S. Size effects and odd-even effects in MoS2 nanosheets: first-principles studies[J]. Physical Chemistry Chemical Physics, 2017, 19(44): 29927-29933. |
27 | Mcbride K L, Head J D. DFT investigation of MoS2 nanoclusters used as desulfurization catalysts[J]. International Journal of Quantum Chemistry, 2009, 109(15): 3570-3582. |
28 | Govind N, Petersen M, Fitzgerald G, et al. A generalized synchronous transit method for transition state location[J]. Computational Materials Science, 2003, 28(2): 250-258 |
29 | Raybaud P, Hafner J, Kresse G, et al. Ab initio study of the H2-H2S/MoS2 gas-solid interface: the nature of the catalytically active sites[J]. Journal of Catalysis, 2000, 189(1): 129-146. |
30 | Wang W, Zhao X G, Li H F, et al. DFT study of H2 dissociation on Mo x S y clusters[J]. China Petroleum Processing & Petrochemical Technology, 2015, 17(1): 16-23. |
[1] | 俞夏琪, 冯格, 赵金燕, 李嘉远, 邓声威, 郑靖楠, 李雯雯, 王亚秋, 沈榄, 刘旭, 徐威威, 王建国, 王式彬, 姚子豪, 毛成立. 基体(TDI-TMP-T313)与氧化剂(AP)相互作用的第一性原理研究[J]. 化工学报, 2022, 73(8): 3511-3517. |
[2] | 赵继昊, 唐伟强, 徐小飞, 赵双良, 贺炅皓. 高分子复合材料中键合剂在不同纳米填料表面的吸附能计算[J]. 化工学报, 2022, 73(7): 3174-3181. |
[3] | 罗小松, 黄金保, 周梅, 牟鑫, 徐伟伟, 吴雷. 对苯二甲酸丁二醇酯二聚体水/醇/氨解机理的理论研究[J]. 化工学报, 2022, 73(11): 4859-4871. |
[4] | 龚翔, 李林森, 姜召. PdCo/SiO2双金属催化剂用于杂环储氢载体的高效脱氢[J]. 化工学报, 2022, 73(10): 4448-4460. |
[5] | 朱先会, 王甫, 夏杰成, 袁金良. 功能型离子液体协同吸收NH3和CO2的密度泛函理论研究[J]. 化工学报, 2022, 73(10): 4324-4334. |
[6] | 马生贵, 田博文, 周雨薇, 陈琳, 江霞, 高涛. 氮掺杂Stone-Wales缺陷石墨烯吸附H2S的密度泛函理论研究[J]. 化工学报, 2021, 72(9): 4496-4503. |
[7] | 张芳芳, 韩敏, 赵娟, 凌丽霞, 章日光, 王宝俊. 单空缺石墨烯负载的Pd单原子催化剂上NO还原的密度泛函理论研究[J]. 化工学报, 2021, 72(3): 1382-1391. |
[8] | 唐伟强, 谢鹏, 徐小飞, 赵双良. 反应密度泛函理论的构建与初步应用[J]. 化工学报, 2021, 72(2): 633-652. |
[9] | 葛冰青, 阴义轩, 王亚溪, 张宏伟, 袁珮. 溶剂对丁腈橡胶溶解、尺寸、结构和催化加氢的影响研究[J]. 化工学报, 2021, 72(1): 543-554. |
[10] | 刘佳鑫, 徐宇, 花儿. 异辛基乙二胺-酰基丙氨酸型质子化离子液体的分子间氢键相互作用[J]. 化工学报, 2020, 71(S1): 15-22. |
[11] | 狄玲, 陈放, 付荣荣, 杨辰, 邢杨, 王晓宁. 富电子LMOF对有机农药的检测机理研究[J]. 化工学报, 2020, 71(8): 3830-3838. |
[12] | 孙巍, 左然. MMAl在NH2与H混合覆盖的AlN(0001)-Al表面的吸附与扩散研究[J]. 化工学报, 2020, 71(7): 3213-3219. |
[13] | 张红, 唐留. p型掺杂剂Cp2Mg在MOCVD气相中的反应机理研究[J]. 化工学报, 2020, 71(7): 3000-3008. |
[14] | 宫梦, 方阳, 陈伟, 陈应泉, 陆强, 杨海平, 陈汉平. 纤维素组分对氨基酸热解的影响[J]. 化工学报, 2020, 71(5): 2312-2319. |
[15] | 朱晓蓉, 李亚飞. 二维AuP2材料电催化固氮性能的理论研究[J]. 化工学报, 2020, 71(10): 4820-4825. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||