1 |
Chaturvedi S, Dave P N. Solid propellants: AP/HTPB composite propellants[J]. Arabian Journal of Chemistry, 2019, 12(8): 2061-2068.
|
2 |
Hunter S, Davidson A J, Morrison C A, et al. Combined experimental and computational hydrostatic compression study of crystalline ammonium perchlorate[J]. The Journal of Physical Chemistry C, 2011, 115(38): 18782-18788.
|
3 |
Kellogg R, Lapidus S, Hedman T, et al. Synchrotron based measurement of the temperature dependent thermal expansion coefficient of ammonium perchlorate[J]. Propellants, Explosives, Pyrotechnics, 2020, 45(3): 480-485.
|
4 |
Kroonblawd M P, Koroglu B, Zaug J M, et al. Effects of pressure on the structure and lattice dynamics of ammonium perchlorate: a combined experimental and theoretical study[J]. The Journal of Chemical Physics, 2018, 149(3): 034501.
|
5 |
Zhu W H, Wei T, Zhu W, et al. Comparative DFT study of crystalline ammonium perchlorate and ammonium dinitramide[J]. The Journal of Physical Chemistry. A, 2008, 112(20): 4688-4693.
|
6 |
Liu Y B, Zhang S H, Gou R J, et al. Theoretical study on the intermolecular interactions between energetic oxidizer and pyrazine - 1, 4 - dioxide[J]. Materials Today Communications, 2020, 24: 101020.
|
7 |
Wu Q, Li C L, Tan L H, et al. Comparative DFT and DFT-D studies on structural, electronic, vibrational and absorption properties of crystalline ammonium perchlorate[J]. RSC Advances, 2016, 6(54): 48489-48497.
|
8 |
Yedukondalu N, Vaitheeswaran G. Polymorphism, phase transition, and lattice dynamics of energetic oxidizer ammonium perchlorate under high pressure[J]. The Journal of Physical Chemistry C, 2019, 123(4): 2114-2126.
|
9 |
Yeh I C, Andzelm J W. Computational study of structural and energetic properties of ammonium perchlorate at interfaces[J]. The Journal of Physical Chemistry C, 2021, 125(22): 12297-12304.
|
10 |
Forquet V, Miró Sabaté C, Chermette H, et al. Energetic properties of rocket propellants evaluated through the computational determination of heats of formation of nitrogen-rich compounds[J]. Chemistry-An Asian Journal, 2016, 11(5): 730-744.
|
11 |
Tang P F, Yang B, Li R, et al. Ti3C2 MXene: a reactive combustion catalyst for efficient burning rate control of ammonium perchlorate based solid propellant[J]. Carbon, 2022, 186: 678-687.
|
12 |
吴芳, 熊中年, 燕为光, 等. Bu-NENA/PBT推进剂安全性能[J]. 固体火箭技术, 2019, 42(4): 483-487.
|
|
Wu F, Xiong Z N, Yan W G, et al. Safety properties of Bu-NENA/PBT propellants[J]. Journal of Solid Rocket Technology, 2019, 42(4): 483-487.
|
13 |
周水平, 王艳萍, 唐根, 等. 黏合剂固化网络参数对叠氮聚醚推进剂低温性能的影响[J]. 化学推进剂与高分子材料, 2017, 15(5): 49-54.
|
|
Zhou S P, Wang Y P, Tang G, et al. Influence of binder curing network parameters on cryogenic performance of azido polyether propellant[J]. Chemical Propellants & Polymeric Materials, 2017, 15(5): 49-54.
|
14 |
周水平, 吴芳, 唐根, 等. 含能交联剂对PBT高能推进剂力学性能的影响[J]. 化学推进剂与高分子材料, 2016, 14(4): 54-59.
|
|
Zhou S P, Wu F, Tang G, et al. Influence of energetic crosslinking agents on mechanical performance of PBT-based high energy propellants[J]. Chemical Propellants & Polymeric Materials, 2016, 14(4): 54-59.
|
15 |
姚维尚, 李倩, 谭惠民. NEPE推进剂黏合剂性能的分子模拟研究[J]. 含能材料, 2007, 15(6): 650-655.
|
|
Yao W S, Li Q, Tan H M. Molecular simulation on properties of NEPE propellant binders[J]. Chinese Journal of Energetic Materials, 2007, 15(6): 650-655.
|
16 |
焦东明, 杨月诚, 强洪夫, 等. 键合剂对HTPB与Al/Al2O3之间界面作用的分子模拟[J]. 火炸药学报, 2009, 32(4): 60-63.
|
|
Jiao D M, Yang Y C, Qiang H F, et al. Molecular simulation of effect of bonding agents on interface interaction for HTPB and Al/Al2O3 [J]. Chinese Journal of Explosives & Propellants, 2009, 32(4): 60-63.
|
17 |
Choi C S, Prask H J, Prince E. Crystal structure of NH4ClO4 at 298, 78, and 10 by neutron diffraction[J]. The Journal of Chemical Physics, 1974, 61(9): 3523-3529.
|
18 |
Mao Y, Hu P. Identification of the active sites and mechanism for partial methane oxidation to methanol over copper-exchanged CHA zeolites[J]. Science China Chemistry, 2020, 63(6): 850-859.
|
19 |
Wei Z Z, Yao Z H, Zhou Q, et al. Optimizing alkyne hydrogenation performance of Pd on carbon in situ decorated with oxygen-deficient TiO2 by integrating the reaction and diffusion[J]. ACS Catalysis, 2019, 9(12): 10656-10667.
|
20 |
Yao Z H, Guo C X, Mao Y, et al. Quantitative determination of C—C coupling mechanisms and detailed analyses on the activity and selectivity for Fischer-Tropsch synthesis on Co(0001): microkinetic modeling with coverage effects[J]. ACS Catalysis, 2019, 9(7): 5957-5973.
|
21 |
Yao Z H, Zhao J Y, Bunting R J, et al. Quantitative insights into the reaction mechanism for the direct synthesis of H2O2 over transition metals: coverage-dependent microkinetic modeling[J]. ACS Catalysis, 2021, 11(3): 1202-1221.
|
22 |
Yao Z H, Zhao J Y, Zhao C X, et al. A first-principles study of reaction mechanism over carbon decorated oxygen-deficient TiO2 supported Pd catalyst in direct synthesis of H2O2 [J]. Chinese Journal of Chemical Engineering, 2021, 31: 126-134.
|
23 |
Khan M A S, Vijayalakshmi R, Singh A, et al. Morphology of ammonium perchlorate in the presence of ethylene glycol as an additive: a first principle study[J]. CrystEngComm, 2019, 21(48): 7519-7527.
|
24 |
Kang L, Li S R, Wang B, et al. Exploration of the energetic material ammonium perchlorate at high pressures: combined Raman spectroscopy and X-ray diffraction study[J]. The Journal of Physical Chemistry C, 2018, 122(28): 15937-15944.
|
25 |
Ma Z Y, Pang A M, Li W, et al. Preparation and characterization of ultra-fine ammonium perchlorate crystals using a microfluidic system combined with ultrasonication[J]. Chemical Engineering Journal, 2021, 405: 126516.
|
26 |
Xie P F, Ding J, Yao Z H, et al. Oxo dicopper anchored on carbon nitride for selective oxidation of methane[J]. Nature Communications, 2022, 13(1): 1375.
|
27 |
Reuter K, Scheffler M. Composition, structure, and stability of RuO2(110) as a function of oxygen pressure[J]. Physical Review B, 2001, 65(3): 035406.
|
28 |
Reuter K, Scheffler M. Composition and structure of the RuO2(110) surface in an O2 and CO environment: implications for the catalytic formation of CO2 [J]. Physical Review B, 2003, 68(4): 045407.
|
29 |
Reuter K, Scheffler M. Oxide formation at the surface of late 4d transition metals: insights from first-principles atomistic thermodynamics[J]. Applied Physics A, 2004, 78(6): 793-798.
|
30 |
Rogal J, Reuter K, Scheffler M. Thermodynamic stability of PdO surfaces[J]. Physical Review B, 2004, 69(7): 075421.
|
31 |
Therrien A J, Zhang R Q, Lucci F R, et al. Structurally accurate model for the “29”-structure of Cu x O/Cu(111): a DFT and STM study[J]. The Journal of Physical Chemistry C, 2016, 120(20): 10879-10886.
|