化工学报 ›› 2020, Vol. 71 ›› Issue (10): 4395-4408.DOI: 10.11949/0438-1157.20200633
收稿日期:
2020-05-25
修回日期:
2020-08-27
出版日期:
2020-10-05
发布日期:
2020-10-05
通讯作者:
聂毅
作者简介:
周乐(1997—),男,博士研究生,基金资助:
Le ZHOU1,2,3(),Binqi WANG3,Yi NIE1,2,3,4()
Received:
2020-05-25
Revised:
2020-08-27
Online:
2020-10-05
Published:
2020-10-05
Contact:
Yi NIE
摘要:
随着人们环保意识和健康意识的提高,抗菌技术在纤维纺织市场的需求日益增长。人工抗菌纤维是将抗菌剂加入到普通纤维中制备的具有抗菌功能的复合纤维,工艺简单,易于工业化生产并满足市场需求。抗菌剂是人工抗菌纤维制备过程中的关键成分,决定了抗菌纤维的制备方法和抗菌效果。基于此,针对人工抗菌纤维,重点探讨了近年来无机抗菌剂、有机抗菌剂、天然抗菌剂和新型材料抗菌剂用于人工抗菌纤维制备的研究现状,并对人工抗菌纤维未来的研究重点和发展趋势进行了展望。
中图分类号:
周乐, 王斌琦, 聂毅. 人工抗菌纤维的研究现状和发展趋势[J]. 化工学报, 2020, 71(10): 4395-4408.
Le ZHOU, Binqi WANG, Yi NIE. Research status and development trend of artificial antibacterial fibers[J]. CIESC Journal, 2020, 71(10): 4395-4408.
12 | Hari Prakash N, Sarma A, Sarma B. Antibacterial studies of copper deposited water hyacinth fiber using RF plasma sputtering process[J]. Materials Technology, 2018, 33(9): 621-633. |
13 | Jiao Y, Wan C, Zhang W, et al. Carbon fibers encapsulated with nano-copper: a coreshell structured composite for antibacterial and electromagnetic interference shielding applications[J]. Nanomaterials (Basel), 2019, 9: 460. |
14 | Shariatinia Z, Shekarriz S, Mirhosseini Mousavi H S, et al. Disperse dyeing and antibacterial properties of nylon and wool fibers using two novel nanosized copper(Ⅱ) complexes bearing phosphoramide ligands[J]. Arabian Journal of Chemistry, 2017, 10(7): 944-955. |
15 | Wang Y, Wang W, Liu B, et al. Preparation of durable antibacterial and electrically conductive polyacrylonitrile fibers by copper sulfide coating[J]. Journal of Applied Polymer Science, 2017, 134(44): 45496. |
16 | 李会改, 万明, 王梅珍, 等. 银系抗菌纤维的研究现状[J]. 合成纤维, 2014, 43(7): 29-32. |
Li H G, Wan M, Wang M Z, et al. Research status of silver antibacterial fibers[J]. Synthetic Fiber, 2014, 43(7): 29-32. | |
17 | Benli B, Yalın C. The influence of silver and copper ions on the antibacterial activity and local electrical properties of single sepiolite fiber: a conductive atomic force microscopy (C-AFM) study[J]. Applied Clay Science, 2017, 146: 449-456. |
18 | Chen G, Yan L, Wan X, et al. In Situ synthesis of silver nanoparticles on cellulose fibers using D-glucuronic acid and its antibacterial application[J]. Materials (Basel), 2019, 12: 3101. |
19 | Kwak H W, Kim J E, Lee K H. Green fabrication of antibacterial gelatin fiber for biomedical application[J]. Reactive and Functional Polymers, 2019, 136: 86-94. |
20 | Smiechowicz E, Niekraszewicz B, Kulpinski P, et al. Antibacterial composite cellulose fibers modified with silver nanoparticles and nanosilica[J]. Cellulose, 2018, 25(6): 3499-3517. |
21 | Zhang Y, Chen H, Sun H, et al. Silver-doped carbon fibers at low loading capacity that display high antibacterial properties[J]. Journal of Chemical Technology & Biotechnology, 2019, 94(5): 1628-1637. |
22 | Xu S, Zhang F, Yao L, et al. Eco-friendly fabrication of antibacterial cotton fibers by the cooperative self-assembly of hyperbranched poly(amidoamine)- and hyperbranched poly(amine-ester)-functionalized silver nanoparticles[J]. Cellulose, 2017, 24(3): 1493-1509. |
1 | 李彦, 施浩浩, 谭玉静, 等. 抗菌纤维及其应用[J]. 中国纤检, 2012, (11): 80-83. |
Li Y, Shi H H, Tan Y J, et al. Antibacterial fiber and its application[J]. China Fiber Inspection, 2012, (11): 80-83. | |
2 | 王建刚, 严涛海. 纺织品抗菌整理研究的现状与发展[J]. 山东纺织科技, 2012, 53(3): 42-45. |
Wang J G, Yan T H. The present situation and development of textile antibacterial finishing research[J]. Shandong Textile Technology, 2012, 53(3): 42-45. | |
3 | 张毅, 高园园. 人工抗菌纤维研究及应用[J]. 天津纺织科技, 2017, (6): 22-25. |
Zhang Y, Gao Y Y. Study and application of artificial antibacterial fibers[J]. Tianjin Textile Technology, 2017, (6): 22-25. | |
4 | Zhu X, Hou X, Ma B, et al. Chitosan/gallnut tannins composite fiber with improved tensile, antibacterial and fluorescence properties[J]. Carbohydr. Polym., 2019, 226: 115311. |
5 | Cassano R, Trombino S, Ferrarelli T, et al. Hemp fiber (Cannabis sativa L.) derivatives with antibacterial and chelating properties[J]. Cellulose, 2013, 20(1): 547-557. |
6 | Tayyar A E, D.TetİK G, Abak E. Evaluation of antibacterial, mechanical, and comfort properties of woven fabrics consist of cotton, bamboo, and silver fibers[J]. Tekstİl Ve Konfeksİyon, 2018, 28(4). |
7 | Gao D, Li Y, Lyu B, et al. Silicone quaternary ammonium salt based nanocomposite: a long-acting antibacterial cotton fabric finishing agent with good softness and air permeability[J]. Cellulose, 2019, 27(2): 1055-1069. |
8 | Osama Bshena T D H, Leon M T D, Bert K. Antimicrobial fibers: therapeutic possibilities and recent advances[J]. Future Med. Chem., 2011, 3(14): 1821-1847. |
23 | Khude P, Majumdar A, Butola B S. Leveraging the antibacterial properties of knitted fabrics by admixture of polyester-silver nanocomposite fibres[J]. Fibers and Polymers, 2018, 19(7): 1403-1410. |
24 | Matsunaga T, Tomoda R, Nakajima T, et al. Photoelectrochemical sterilization of microbial cells by semiconductor powders [J]. FEMS Microbiology Letters, 1985, 29(1/2): 211-214. |
9 | 陈仕国, 郭玉娟, 陈少军, 等. 纺织品抗菌整理剂研究进展[J]. 材料导报, 2012, 26(7): 89-94. |
Chen S G, Guo Y J, Chen S J, et al. Progress in antibacterial finishing agents for textiles[J]. Material Review, 2012, 26(7): 89-94. | |
25 | Deng Y, Li Z, Tang R, et al. What will happen when microorganisms “meet” photocatalysts and photocatalysis?[J]. Environmental Science: Nano, 2020, 7(3): 702-723. |
26 | Wen J, Li Q, Li H, et al. Nano-TiO2 imparts amidoximated wool fibers with good antibacterial activity and adsorption capacity for uranium(Ⅵ) recovery[J]. Industrial & Engineering Chemistry Research, 2018, 57(6): 1826-1833. |
10 | 莫月香, 罗峻, 杨欣卉. 纺织品抗菌整理剂及其检测研究进展[J]. 广东化工, 2018, 45(11): 150-151. |
Mo Y X, Luo J, Yang X H. Research progress of antibacterial finishing agents and their detection for textiles[J]. Guangdong Chemical, 2018, 45(11): 150-151. | |
27 | Jingjit P, Srisawat N. Spinning of photocatalytic fiber as splittable segmented-pie bi-component fibers for antibacterial textiles[J]. J. Nanosci. Nanotechnol., 2019, 19(3): 1554-1561. |
28 | Jaksik J, Tran P, Galvez V, et al. Advanced cotton fibers exhibit efficient photocatalytic self-cleaning and antimicrobial activity[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 365: 77-85. |
29 | Tan L Y, Sin L T, Bee S T, et al. A review of antimicrobial fabric containing nanostructures metal-based compound[J]. Journal of Vinyl and Additive Technology, 2019, 25(S1): E3-E27. |
30 | Malis D, Jersek B, Tomsic B, et al. Antibacterial activity and biodegradation of cellulose fiber blends with incorporated ZnO[J]. Materials (Basel), 2019, 12: 20. |
11 | 张海涛, 张雪, 刘蒙蒙, 等. 天然抗菌纺织品的发展现状[J]. 纺织科技进展, 2020, (3): 8-11. |
Zhang H T, Zhang X, Liu M M, et al. Development status of natural antibacterial textiles[J]. Advances in Textile Technology, 2020, (3): 8-11. | |
31 | Popescu M C, Ungureanu C, Buse E, et al. Antibacterial efficiency of cellulose-based fibers covered with ZnO and Al2O3 by atomic layer deposition[J]. Applied Surface Science, 2019, 481: 1287-1298. |
32 | Gopinath A, Krishna K. Dual role of chemically functionalized activated carbon fibres: investigation of parameters influencing the degradation of organophosphorus compounds and antibacterial behaviour[J]. Journal of Chemical Technology & Biotechnology, 2019, 94(2): 611-617. |
33 | Salgueiro A M, Santos M D, Saraiva J A, et al. Ultra-high pressure modified cellulosic fibres with antimicrobial properties[J]. Carbohydr. Polym., 2017, 175: 303-310. |
34 | Borda d' Água R, Branquinho R, Duarte M P, et al. Efficient coverage of ZnO nanoparticles on cotton fibres for antibacterial finishing using a rapid and low cost in situ synthesis[J]. New Journal of Chemistry, 2018, 42(2): 1052-1060. |
35 | Bhutiya P L, Misra N, Abdul Rasheed M, et al. Nested seaweed cellulose fiber deposited with cuprous oxide nanorods for antimicrobial activity[J]. Int. J. Biol. Macromol., 2018, 117: 435-444. |
36 | Zhou J, Fei X, Li C, et al. Integrating nano-Cu2O@ZrP into in situ polymerized polyethylene terephthalate (pet) fibers with enhanced mechanical properties and antibacterial activities[J]. Polymers (Basel), 2019, 11: 1. |
37 | Ibrahim M M, Mezni A, El-Sheshtawy H S, et al. Direct z-scheme of Cu2O/TiO2 enhanced self-cleaning, antibacterial activity, and UV protection of cotton fiber under sunlight[J]. Applied Surface Science, 2019, 479: 953-962. |
38 | 周静茹, 裴丽霞, 张立志. 改性活性炭负载高分子季铵盐的杀菌性能[J]. 化工学报, 2012, 63(1): 286-291. |
Zhou J R, Pei L X, Zhang L Z. Bactericidal properties of polymer quaternary ammonium salt supported on modified activated carbon[J]. CIESC Journal, 2012, 63(1): 286-291. | |
39 | Ates B, Cerkez I. Dual antibacterial functional regenerated cellulose fibers[J]. Journal of Applied Polymer Science, 2017, 134(21): 44872. |
40 | Lee S, Lee J. Antibacterial coating of glass fiber filters with silver nanoparticles (agnps) and glycidyltrimethylammonium chloride (GTAC)[J]. Fibers and Polymers, 2018, 19(10): 2080-2087. |
41 | Zhang B, Jiang Y. Durable antibacterial and hydrophobic polyester fibres and wearable textiles[J]. Micro & Nano Letters, 2018, 13(7): 1011-1016. |
42 | 靳亚楠. 甜菜碱型氯胺抗菌剂的合成及其应用[D]. 大连: 大连理工大学, 2019. |
Jin Y N. Synthesis and application of betaine chloramine antibacterial agent[D]. Dalian: Dalian University of Technology, 2019. | |
43 | Chang L, Wang J, Tong C, et al. Comparison of antimicrobial activities of polyacrylonitrile fibers modified with quaternary phosphonium salts having different alkyl chain lengths[J]. Journal of Applied Polymer Science, 2016, 133(29): 43689. |
44 | 孙雪飞, 高勇强, 赵颂, 等. 胍基聚合物接枝改性制备抗菌抗污染超滤膜[J]. 化工学报, 2018, 69(11): 4869-4878. |
Ren X F, Gao Y Q, Zhao S, et al. Preparation of antibacterial ultrafiltration membrane by grafting modification of guanidine polymer[J]. CIESC Journal, 2018, 69(11): 4869-4878. | |
45 | Cao C, Wu K, Yuan W, et al. Synthesis of non-water soluble polymeric guanidine derivatives and application in preparation of antimicrobial regenerated cellulose[J]. Fibers and Polymers, 2017, 18(6): 1040-1047. |
46 | Cai Q, Yang S, Zhang C, et al. Facile and versatile modification of cotton fibers for persistent antibacterial activity and enhanced hygroscopicity[J]. ACS Appl. Mater. Interfaces, 2018, 10(44): 38506-38516. |
47 | 韩瑞涛, 赵磊, 唐二军, 等. ATRP法接枝卤胺分子制备纤维素共聚物抗菌材料[J]. 化工学报, 2018, 69: 155-160. |
Han R T, Zhao L, Tang E J, et al. The antibacterial materials of cellulose copolymers were prepared by grafting halide amine with ATRP method[J]. CIESC Journal, 2018, 69: 155-160. | |
48 | Jie Z, Zhang B, Zhao L, et al. Regenerable antimicrobial silica gel with quaternarized N-halamine[J]. Journal of Materials Science, 2014, 49(9): 3391-3399. |
49 | Chen S G, Chen S J, Jiang S, et al. Study of zwitterionic sulfopropylbetaine containing reactive siloxanes for application in antibacterial materials[J]. Colloids and Surfaces B-Biointerfaces, 2011, 85(2): 323-329. |
50 | Chen S G, Yuan L J, Li Q Q, et al. Durable antibacterial and nonfouling cotton textiles with enhanced comfort via zwitterionic sulfopropylbetaine coating[J]. Small, 2016, 12(26): 3516-3521. |
51 | Chen S G, Chen S J, Jiang S, et al. Environmentally friendly antibacterial cotton textiles finished with siloxane sulfopropylbetaine[J]. ACS Applied Materials & Interfaces, 2011, 3(4): 1154-1162. |
52 | Zhang S B, Yang X H, Tang B, et al. New insights into synergistic antimicrobial and antifouling cotton fabrics via dually finished with quaternary ammonium salt and zwitterionic sulfobetaine[J]. Chemical Engineering Journal, 2018, 336: 123-132. |
53 | Zeng M, Xu J, Luo Q, et al. Constructing antibacterial polymer nanocapsules based on pyridine quaternary ammonium salt[J]. Mater. Sci. Eng. C Mater. Biol. Appl., 2020, 108: 110383. |
54 | Li L, Jia D, Wang H, et al. Synthesis of sulfonium N-chloramines for antibacterial applications[J]. New Journal of Chemistry, 2020, 44(2): 303-307. |
55 | Zhou Y, Tang R C. Natural flavonoid-functionalized silk fiber presenting antibacterial, antioxidant, and UV protection performance[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 10518-10526. |
56 | Li Y D, Guan J P, Tang R C, et al. Application of natural flavonoids to impart antioxidant and antibacterial activities to polyamide fiber for health care applications[J]. Antioxidants (Basel), 2019, 8: 38. |
57 | Shahmoradi Ghaheh F, Mortazavi S M, Alihosseini F, et al. Assessment of antibacterial activity of wool fabrics dyed with natural dyes[J]. Journal of Cleaner Production, 2014, 72: 139-145. |
58 | Jamili F, Mirjalili M, Zamani H A. Antibacterial wood-plastic composite produced from treated and natural dyed wood fibers[J]. Polymers and Polymer Composites, 2019, 27(6): 347-355. |
59 | Khaldi Z, Ouk T S, Zerrouki R. Synthesis and antibacterial properties of thymol and carvacrol grafted onto lignocellulosic kraft fibers[J]. Journal of Bioactive and Compatible Polymers, 2018, 33(5): 558-570. |
60 | Huang T, Chen C, Li D, et al. Hydrophobic and antibacterial textile fibres prepared by covalently attaching betulin to cellulose[J]. Cellulose, 2019, 26(1): 665-677. |
61 | Liu Y R, Thomsen K, Nie Y, et al. Predictive screening of ionic liquids for dissolving cellulose and experimental verification[J]. Green Chemistry, 2016, 18(23): 6246-6254. |
62 | Zhang Z, Nie Y, Zhang Q, et al. Quantitative change in disulfide bonds and microstructure variation of regenerated wool keratin from various ionic liquids[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(3): 2614-2622. |
63 | Liu X, Nie Y, Liu Y, et al. Screening of ionic liquids for keratin dissolution by means of COSMO-RS and experimental verification[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(12): 17314-17322. |
64 | Liu Y, Wang Y, Nie Y, et al. Preparation of MWCNTs-graphene-cellulose fiber with ionic liquids[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(24): 20013-20021. |
65 | Zhou L, Pan F, Liu Y, et al. Study on the regularity of cellulose degradation in ionic liquids[J]. Journal of Molecular Liquids, 2020, 308: 113153. |
66 | 张锁江, 刘艳荣, 聂毅. 离子液体溶解天然高分子材料及绿色纺丝技术研究综述[J]. 轻工学报, 2016, 31(2): 1-14. |
Zhang S J, Liu Y R, Nie Y. Research review of dissolving natural polymer materials with ionic liquids and green spinning technology[J]. Journal of Light Industry, 2016, 31(2): 1-14. | |
67 | 聂毅, 王均凤, 张振磊, 等. 离子液体回收循环利用的研究进展与趋势[J]. 化工进展, 2019, 38(1): 100-110. |
Nie Y, Wang J F, Zhang Z L, et al. Trends and research progresses on the recycling of ionic liquids[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 100-110. | |
68 | 王均凤, 聂毅, 王斌琦, 等. 离子液体法再生纤维素纤维制造技术及发展趋势[J]. 化工学报, 2019, 70(10): 3836-3846. |
Wang J F, Nie Y, Wang B Q, et al. Manufacturing technology and development direction on regenerated cellulose fibers using ionic liquids[J]. CIESC Journal, 2019, 70(10): 3836-3846. | |
69 | 聂毅, 周乐, 康召青, 等. 一种原液着色制备姜黄抗菌再生纤维的方法:201910877532.6[P]. 2019-09-17. |
Nie Y, Zhou L, Kang Z Q, et al. A method for preparing turmeric antibacterial regenerated fiber by coloring the original solution: 201910877532.6[P]. 2019-09-17. | |
70 | Qiao Z, Fu Y, Lei C, et al. Advances in antimicrobial peptides-based biosensing methods for detection of foodborne pathogens: a review[J]. Food Control, 2020, 112: 107116. |
71 | Liu M, Jia L, Zhao Z, et al. Fast and robust lead (Ⅱ) removal from water by bioinspired amyloid lysozyme fibrils conjugated with polyethyleneimine (PEI)[J]. Chemical Engineering Journal, 2020, 390: 124667. |
72 | Li J, Wang X, Liu X, et al. Manufacture and performance of O-carboxymethyl chitosan sodium salt/cellulose fibers in N-methylmorpholine-N-oxide system[J]. Fibers and Polymers, 2014, 15(8): 1575-1582. |
73 | Ma B, Zhang M, He C, et al. New binary ionic liquid system for the preparation of chitosan/cellulose composite fibers[J]. Carbohydrate Polymers, 2012, 88(1): 347-351. |
74 | Rahman B M A, Hossain M A, Zakaria M, et al. Chitosan coated cotton fiber: physical and antimicrobial properties for apparel use[J]. Journal of Polymers and the Environment, 2016, 25(2): 334-342. |
75 | Hu X, Ren N, Chao Y, et al. Highly aligned graphene oxide/poly(vinyl alcohol) nanocomposite fibers with high-strength, antiultraviolet and antibacterial properties[J]. Composites Part A: Applied Science and Manufacturing, 2017, 102: 297-304. |
76 | Ma Y, Bai D, Hu X, et al. Robust and antibacterial polymer/mechanically exfoliated graphene nanocomposite fibers for biomedical applications[J]. ACS Appl. Mater. Interfaces, 2018, 10(3): 3002-3010. |
77 | Zhang Y, Lu Y, Yan X, et al. Functional & enhanced graphene/polyamide 6 composite fiber constructed by a facile and universal method[J]. Composites Part A: Applied Science and Manufacturing, 2019, 123: 149-157. |
78 | Ma S, Zhang M, Nie J, et al. Multifunctional cellulose-based air filters with high loadings of metal-organic frameworks prepared by in situ growth method for gas adsorption and antibacterial applications[J]. Cellulose, 2018, 25(10): 5999-6010. |
79 | Yu Y, Chen G, Guo J, et al. Vitamin metal-organic framework-laden microfibers from microfluidics for wound healing[J]. Materials Horizons, 2018, 5(6): 1137-1142. |
[1] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[2] | 张澳, 罗英武. 低模量、高弹性、高剥离强度丙烯酸酯压敏胶[J]. 化工学报, 2023, 74(7): 3079-3092. |
[3] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[4] | 蔡斌, 张效林, 罗倩, 党江涛, 左栗源, 刘欣梅. 导电薄膜材料的研究进展[J]. 化工学报, 2023, 74(6): 2308-2321. |
[5] | 崔张宁, 胡紫璇, 吴雷, 周军, 叶干, 刘田田, 张秋利, 宋永辉. 可降解纤维素基材料的耐水性能研究进展[J]. 化工学报, 2023, 74(6): 2296-2307. |
[6] | 李振, 张博, 王丽伟. PEG-EG固-固相变材料的制备和性能研究[J]. 化工学报, 2023, 74(6): 2680-2688. |
[7] | 代佳琳, 毕唯东, 雍玉梅, 陈文强, 莫晗旸, 孙兵, 杨超. 热物性对混合型CPCMs固液相变特性影响模拟研究[J]. 化工学报, 2023, 74(5): 1914-1927. |
[8] | 陈韶云, 徐东, 陈龙, 张禹, 张远方, 尤庆亮, 胡成龙, 陈建. 单层聚苯胺微球阵列结构的制备及其吸附性能[J]. 化工学报, 2023, 74(5): 2228-2238. |
[9] | 刘瑞琪, 周栖桐, 张悦, 贺莹, 高静, 马丽. 基于金纳米颗粒修饰二氧化硅纳米花的生物传感器构建及应用[J]. 化工学报, 2023, 74(3): 1247-1259. |
[10] | 徐东, 田杜, 陈龙, 张禹, 尤庆亮, 胡成龙, 陈韶云, 陈建. 聚苯胺/二氧化锰/聚吡咯复合纳米球的制备及其电化学储能性[J]. 化工学报, 2023, 74(3): 1379-1389. |
[11] | 陈瑞哲, 程磊磊, 顾菁, 袁浩然, 陈勇. 纤维增强树脂复合材料化学回收技术研究进展[J]. 化工学报, 2023, 74(3): 981-994. |
[12] | 徐振和, 李泓江, 高雨, 礼峥, 张含烟, 徐宝彤, 丁茯, 孙亚光. In2O3/Ag:ZnIn2S4“Type Ⅱ”型异质结构材料的制备及可见光催化性能[J]. 化工学报, 2022, 73(8): 3625-3635. |
[13] | 杨双桥, 韦宝杰, 徐大伟, 李莉, 王琪. 铝塑复合包装的应用及废弃物回收利用新技术[J]. 化工学报, 2022, 73(8): 3326-3337. |
[14] | 钟磊, 邱学青, 张文礼. 木质素衍生炭在碱金属离子电池负极中的研究进展[J]. 化工学报, 2022, 73(8): 3369-3380. |
[15] | 张鑫, 许蕊, 路馨语, 牛永安. SiO2@BiOCl-Bi24O31Cl10核壳微球的合成及光催化[J]. 化工学报, 2022, 73(8): 3636-3646. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||