化工学报 ›› 2020, Vol. 71 ›› Issue (11): 5099-5106.DOI: 10.11949/0438-1157.20200194
王刚1(),熊亚选1(),吴玉庭2,徐鹏1,冷光辉3,马重芳2
收稿日期:
2020-02-07
修回日期:
2020-06-28
出版日期:
2020-11-05
发布日期:
2020-11-05
通讯作者:
熊亚选
作者简介:
王刚(1985—),男,讲师,基金资助:
Gang WANG1(),Yaxuan XIONG1(),Yuting WU2,Peng XU1,Guanghui LENG3,Chongfang MA2
Received:
2020-02-07
Revised:
2020-06-28
Online:
2020-11-05
Published:
2020-11-05
Contact:
Yaxuan XIONG
摘要:
高温热管是高温领域高效传热的关键技术。为进一步研究开发高效热管,提升工业过程传热性能,以熔盐作为热管的传热工质,搭建了高温热管传热实验台,研究了传热工质和倾斜角对热管启动和等温性能的影响。结果表明,在450~700 K工作温度范围内,AlBr3和TiCl4熔盐热管在倾斜角为45°和60°的条件下,均达到最优的启动性能;在热管倾斜角为60°时,两种熔盐热管等温性能均达到最佳。无机盐AlBr3和TiCl4作为传热工质,重力热管具有良好的启动和等温性能。
中图分类号:
王刚,熊亚选,吴玉庭,徐鹏,冷光辉,马重芳. 高温熔盐热管的启动和等温性能[J]. 化工学报, 2020, 71(11): 5099-5106.
Gang WANG,Yaxuan XIONG,Yuting WU,Peng XU,Guanghui LENG,Chongfang MA. Startup and isothermal performance of high-temperature molten salt heat pipe[J]. CIESC Journal, 2020, 71(11): 5099-5106.
图1 高温熔盐重力热管实验装置示意图1—热管管壳;2—耐高温保温材料;3—管式电加热炉;4—可控硅;5—K型热电偶;6—数据采集器;7—PC;8—可调支架;9—真空模块
Fig.1 Schematic diagram of the experimental apparatus for high temperature molten salt gravity heat pipe
主要部件 | 型号 | 转速/(r·min-1) | 抽气速度/(L·s-1) | 关气镇极限 全压力/Pa | 气镇极限 全压力/Pa | 气镇极限 分压力/Pa |
---|---|---|---|---|---|---|
机械泵 | RVP-2 | 1400 | 2 | 4×10-2 | 3 | 1.2 |
表1 机械泵的型号和工作参数
Table 1 The model of mechannical vaccum pump and working parameters
主要部件 | 型号 | 转速/(r·min-1) | 抽气速度/(L·s-1) | 关气镇极限 全压力/Pa | 气镇极限 全压力/Pa | 气镇极限 分压力/Pa |
---|---|---|---|---|---|---|
机械泵 | RVP-2 | 1400 | 2 | 4×10-2 | 3 | 1.2 |
主要部件 | 型号 | 极限压力/Pa | 抽气速度/(L·s-1) | 最大排气压力/Pa | 加热功率/kW | 冷却水耗量/(L·s-1) |
---|---|---|---|---|---|---|
扩散泵 | KT-150 | 5×10-4 | 1000 | 40 | 1.0 | 0.083 |
表2 扩散泵的型号和工作参数
Table 2 The model of diffusion pump and working parameters
主要部件 | 型号 | 极限压力/Pa | 抽气速度/(L·s-1) | 最大排气压力/Pa | 加热功率/kW | 冷却水耗量/(L·s-1) |
---|---|---|---|---|---|---|
扩散泵 | KT-150 | 5×10-4 | 1000 | 40 | 1.0 | 0.083 |
主要部件 | 型号 | 炉口直径/mm | 炉膛内高/mm | 额定功率/kW | 最大工作温度/℃ | 额定工作温度/℃ |
---|---|---|---|---|---|---|
电加热炉 | SG2-7 | 30 | 1000 | 7 | 1000 | 1300 |
表3 电加热炉的型号和工作参数
Table 3 The model of electric heating furnace and working parameters
主要部件 | 型号 | 炉口直径/mm | 炉膛内高/mm | 额定功率/kW | 最大工作温度/℃ | 额定工作温度/℃ |
---|---|---|---|---|---|---|
电加热炉 | SG2-7 | 30 | 1000 | 7 | 1000 | 1300 |
工质 | 熔点/K | 沸点/K | 临界温度/K | 临界压力/atm | 熔化潜热/ (kJ·kg-1) | 液态密度/(kg·m-3) | 表面张力/(N·m-1) | 充注量 |
---|---|---|---|---|---|---|---|---|
AlBr3 | 370.6 | 537.0 | 763.0 | 28.5 | 85.5 | 2331(400 K) | 0.016(400 K) | 200 g |
TiCl4 | 248.0 | 409.5 | 638.0 | 46.0 | 190.0 | 1543(400 K) | 0.0211(400 K) | 30 ml |
C10H8 | 353.5 | 491.0 | 748.0 | 40.5 | 19.18 | 4788(400 K) | 0.0240(400 K) | 200 g |
表4 热管工质的基本特性参数
Table 4 Basic characteristics of working fluid of heat pipe
工质 | 熔点/K | 沸点/K | 临界温度/K | 临界压力/atm | 熔化潜热/ (kJ·kg-1) | 液态密度/(kg·m-3) | 表面张力/(N·m-1) | 充注量 |
---|---|---|---|---|---|---|---|---|
AlBr3 | 370.6 | 537.0 | 763.0 | 28.5 | 85.5 | 2331(400 K) | 0.016(400 K) | 200 g |
TiCl4 | 248.0 | 409.5 | 638.0 | 46.0 | 190.0 | 1543(400 K) | 0.0211(400 K) | 30 ml |
C10H8 | 353.5 | 491.0 | 748.0 | 40.5 | 19.18 | 4788(400 K) | 0.0240(400 K) | 200 g |
1 | Vasiliev L L. Heat pipes in modern heat exchangers[J]. Applied Thermal Engineering, 2005, 25(1): 1-19. |
2 | Lin S, Broadbent J, Mcglen R. Numerical study of heat pipe application in heat recovery systems[J]. Applied Thermal Engineering, 2005, 25(1): 127-133. |
3 | Orr B, Akbarzandeh A, Mochizuki M, et al. A review of car waste heat recovery systems utilising thermoelectric generators and heat pipes[J]. Applied Thermal Engineering, 2016, 101: 490-495. |
4 | Pastukhov V G, Maidanik Y F, Vershinin C V, et al. Miniature loop heat pipes for electronics cooling[J]. Applied Thermal Engineering, 2003, 23(9): 1125-1135. |
5 | Zhang H, Zhuang J. Research, development and industrial application of heat pipe technology in China[J]. Applied Thermal Engineering, 2003, 23(9): 1067-1083. |
6 | El-baky M A A, Mohamed M M. Heat pipe heat exchanger for heat recovery in air conditioning[J]. Applied Thermal Engineering, 2007, 27(4): 795-801. |
7 | Shabgard H, Bergman T L, Sharifin N, et al. High temperature latent heat thermal energy storage using heat pipes[J]. International Journal of Heat and Mass Transfer, 2010, 53(15): 2979-2988. |
8 | Amini A, Miller J, Jouhara H. An investigation into the use of the heat pipe technology in thermal energy storage heat exchangers[J]. Energy, 2017, 136: 163-172. |
9 | Reid I, Merrigan M A. Heat pipe activity in the Americas—1990 to 1995[C]//Proceedings of the Ⅸ International Heat Pipe Conference. New Mexico: Los Alamos National Laboratory, 1997: 1-28. |
10 | Rosenfeld J H, Ernst D M, Lindemuth J E, et al. An overview of long duration sodium heat pipe tests[C]//AIP Conference Proceedings. New Mexico: American Institute of Physics, 2004: 140-147. |
11 | Merrigan M, Dunwoody W, Lundberg L. Heat pipe development for high temperature recuperator application[C]//Proceedings of the Ⅳth International Heat Pipe Conference. London, UK: Advances in Heat Pipe Technology, 1981: 245-257. |
12 | Mahjouri F. Vacuum tube liquid-vapor (heat-pipe) collectors[C]//Proceedings of the Solar Conference. American Solar Energy Society; American Institute of Architects, 2004: 341-346. |
13 | Tolubinskii V, Shevchuk E, Stambrovskii V. Study of liquid-metal heat pipes characteristics at start-up and operation under gravitation[C]//3rd International Heat Pipe Conference. Palo Alto, CA, USA, 1978: 274-282. |
14 | Lorenzin N, Abánades A. A review on the application of liquid metals as heat transfer fluid in concentrated solar power technologies[J]. International Journal of Hydrogen Energy, 2016, 41(17): 6990-6995. |
15 | Lyon R N, Poppendiek H. Liquid-metal Heat Transfer[M]//Liquid-metals Handbook. Washington: Government Printing Office, 1951: 184. |
16 | 杨武龙, 姜洪涛, 吴靥汝, 等. 熔盐在新能源领域的应用[J]. 过程工程学报, 2012, 12(5): 893-900. |
Yang W L, Jiang H T, Wu Y R, et al. Progress in the application of molten salts for new energy profuction[J]. The Chinese Journal of Process Engineering, 2012, 12(5): 893-900. | |
17 | 路阳, 彭国伟, 王智平, 等. 熔融盐相变储热材料的研究现状及发展趋势[J]. 材料导报 A: 综述篇, 2011, 25(11): 39-42. |
Lu Y, Peng G W, Wang Z P, et al. A review on research for molten salt as a phase change meteria[J]. Material Guide A: Overview, 2011, 25(11): 39-42. | |
18 | 吴玉庭, 鹿院卫, 桑丽霞, 等. 高温熔盐传热蓄热的基础与应用研究[C]//第一届全国储能科学与技术大会. 北京, 2014. |
Wu Y T, Lu Y W, Sang L X, et al. Research on the basis and application of high-temperature molten salt heat transfer and storage[C]// The First National Conference on Energy Storage Science and Technology. Beijing, 2014. | |
19 | 熊亚选, 吴玉庭, 刘闪威, 等. 低熔点熔盐在槽式太阳能集热中的初步实验研究[J]. 太阳能学报, 2015, 36(1): 173-178. |
Xiong Y X, Wu Y T, Liu S W, et al. Preliminary experimental study of low melting-point molten salt in parabolic trough collectors[J]. Acta Energiae Solaris Sinica, 2015, 36(1): 173-178. | |
20 | 胡宝华, 丁静, 魏小兰, 等. 高温熔盐的热物性测试及热稳定性分析[J]. 无机盐工业, 2010, 42(1): 22-24. |
Hu B H, Ding J, Wei X L, et al. Test of thermalphysics and analysis on thermalstability of high temperature molten salt[J]. Inorganic Chemicals Industry, 2010, 42(1): 22-24. | |
21 | 杨进学. 熔融盐物性精度对传热特性影响分析及黏度推算[D]. 北京: 北京工业大学, 2012. |
Yang J X. Analysis of influence of molten salt physical property accuracy on heat transfer characteristics and viscosity estimation[D]. Beijing: Beijing University of Technology, 2012. | |
22 | Xiong Y, Wang Z, Wu Y, et al. Performance enhancement of bromide salt by nano-particle dispersion for high-temperature heat pipes in concentrated solar power plants[J]. Applied Energy, 2019, 237: 171-179. |
23 | 马重芳, 吴玉庭, 孟强, 等. 一种熔盐重力热管: 103743273B[P]. 2015-07-01. |
Ma C F, Wu Y T, Meng Q, et al. Gravity heat pipe with molten salt: 103743273B[P]. 2015-07-01. | |
24 | 程进辉. 传蓄热熔盐的热物性研究[D]. 上海: 中国科学院研究生院(上海应用物理研究所), 2014. |
Cheng J H. Study on thermophysical properties of heat transfer and molten salt[D]. Shanghai: Graduate School of the Chinese Academy of Sciences (Shanghai Institute of Applied Physics), 2014. | |
25 | Wang X, Ma T, Zhu Y, et al. Experimental investigation on startup and thermal performance of a high temperature special-shaped heat pipe coupling the flat plate heat pipe and cylindrical heat pipes[J]. Experimental Thermal and Fluid Science, 2016, 77: 1-9. |
26 | Patel V M, Gaurav, Mehta H B. Influence of working fluids on startup mechanism and thermal performance of a closed loop pulsating heat pipe[J]. Applied Thermal Engineering, 2017, 110: 1568-1577. |
27 | Yuan Y, Shan J, Zhang B, et al. Study on startup characteristics of heat pipe cooled and amtec conversion space reactor system[J]. Progress in Nuclear Energy, 2016, 86: 18-30. |
28 | 刘龙兵, 张喜春. 萘工质重力热管启动性能初步实验研究[J]. 河南科技, 2014, (22): 106-107. |
Liu L B, Zhang X C. Preliminary experimental study on the start-up performance of naphthalene working gravity heat pipe[J]. Henan Science and Technology, 2014, (22): 106-107. | |
29 | 李金旺, 戴书刚. 高温热管技术研究进展与展望[J]. 中国空间科学技术, 2019, 39(3): 30-42. |
Li J W, Dai S G. Research progress and prospect of high temperature heat pipe technology[J]. China Space Science and Technology, 2019, 39(3): 30-42. | |
30 | 孟强, 熊亚选, 吴玉庭, 等. 熔盐重力热管工质选择的初步实验研究[J]. 化工机械, 2015, 42(6): 759-763. |
Meng Q, Xiong Y X, Wu Y T, et al. Preliminary experimental study on working medium selection of molten salt gravity heat pipe[J]. Chemical Machinery, 2015, 42(6): 759-763. |
[1] | 苏伟, 马东旭, 金旭, 刘忠彦, 张小松. 表面润湿性对霜层传递特性影响可视化实验研究[J]. 化工学报, 2023, 74(S1): 122-131. |
[2] | 蒋祎璠, 刘蕾, 赵耀, 代彦军. UVLED光学元件液冷散热系统性能研究[J]. 化工学报, 2023, 74(S1): 154-160. |
[3] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[4] | 申利梅, 胡博兴, 谢雨霏, 曾伟豪, 张晓屿. 超薄平板热管传热性能的实验研究[J]. 化工学报, 2023, 74(S1): 198-205. |
[5] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[6] | 吴延鹏, 刘乾隆, 田东民, 陈凤君. 相变材料与热管耦合的电子器件热管理研究进展[J]. 化工学报, 2023, 74(S1): 25-31. |
[7] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[8] | 史方哲, 甘云华. 超薄热管启动特性和传热性能数值模拟[J]. 化工学报, 2023, 74(7): 2814-2823. |
[9] | 王光, 单发顺, 钱禹丞, 焦建芳. 基于集成学习传递熵的化工过程微小故障检测方法[J]. 化工学报, 2023, 74(7): 2967-2978. |
[10] | 王光宇, 张锴, 张凯华, 张东柯. 微波加热干燥煤泥热质传递及其能耗特性分析[J]. 化工学报, 2023, 74(6): 2382-2390. |
[11] | 王荣, 王永洪, 张新儒, 李晋平. 6FDA型聚酰亚胺炭分子筛气体分离膜的构筑及其应用[J]. 化工学报, 2023, 74(4): 1433-1445. |
[12] | 杨辉著, 兰精灵, 杨月, 梁嘉林, 吕传文, 朱永刚. 高功率平板热管传热性能的实验研究[J]. 化工学报, 2023, 74(4): 1561-1569. |
[13] | 时国华, 何林珅, 赵玺灵, 张世钢. 余热回收喷淋塔的烟气颗粒物脱除特性研究[J]. 化工学报, 2023, 74(4): 1735-1745. |
[14] | 钱志广, 樊越, 王世学, 岳利可, 王金山, 朱禹. 吹扫条件对PEMFC阻抗弛豫现象和低温启动的影响[J]. 化工学报, 2023, 74(3): 1286-1293. |
[15] | 陈建勋, 刘金平, 许雄文, 余银豪. 一种新型环路重力热管的数值模拟和性能优化[J]. 化工学报, 2023, 74(2): 721-734. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||