1 |
Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294-303.
|
2 |
Balat M, Balat H, Oz C. Progress in bioethanol processing[J]. Progress in Energy and Combustion Science, 2008, 34(5): 551-573.
|
3 |
Aryal N, Tremblay P L, Lizak D M, et al. Performance of different Sporomusa species for the microbial electrosynthesis of acetate from carbon dioxide[J]. Bioresource Technology, 2017, 233: 184-190.
|
4 |
Siegert M, Yates M D, Call D F, et al. Comparison of nonprecious metal cathode materials for methane production by electromethanogenesis[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(4): 910-917.
|
5 |
Cheng S A, Xing D F, Call D F, et al. Direct biological conversion of electrical current into methane by electromethanogenesis[J]. Environmetal Science & Technology, 2009, 43(10): 3953-3958.
|
6 |
Rabaey K, Rozendal R A. Microbial electrosynthesis-revisiting the electrical route for microbial production[J]. Nature Reviews Microbiol, 2010, 8(10): 706-716.
|
7 |
Steinbusch K J J, Hamelers H V M, Schaap J D, et al. Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures [J]. Environ. Sci. Technol., 2009, 44 (1): 513-517
|
8 |
Huang L, Jiang L, Wang Q, et al. Cobalt recovery with simultaneous methane and acetate production in biocathode microbial electrolysis cells [J]. Chem. Eng. J., 2014, 253 (3): 281-290
|
9 |
Xiang Y, Liu G, Zhang R, et al. Acetate production and electron utilization facilitated by sulfate-reducing bacteria in a microbial electrosynthesis system[J]. Bioresource Technology, 2017, 241(Supplement C): 821-829.
|
10 |
Garcia J L, Patel B K C, Ollivier B. Taxonomic, phylogenetic and ecological diversity of methanogenic Archaea[J]. Anaerobe, 2000, 6: 205-226
|
11 |
Villano M, Aulenta F, Ciucci C, et al. Bioelectrochemical reduction of CO2 to CH4via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture[J]. Bioresource Technology, 2010, 101(9): 3085-3090.
|
12 |
Cusick R D, Bryan B, Parker D S, et al. Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater[J]. Applied Microbiology & Biotechnology, 2011, 89(6): 2053-2063.
|
13 |
Zhang X C, Halme A. Modelling of a microbial fuel cell process[J]. Biotechnology Letters, 1995, 17(8): 809-814.
|
14 |
Sadhukhan J, Ng K S, Hernandez E M. Biorefineries and chemical processes: design, integration and sustainability analysis[J]. Green Processing & Synthesis, 2015, 4(2): 163.
|
15 |
Picioreanu C, Head I M, Katuri K P, et al. A computational model for biofilm-based microbial fuel cells[J]. Water Research, 2007, 41(13): 2930-2940.
|
16 |
Pinto R P, Srinivasan B, Manuel M F, et al. A two-population bio-electrochemical model of a microbial fuel cell[J]. Bioresource Technology, 2010, 101(14): 5256-5265.
|
17 |
Mardanpour M M, Yaghmaei S, Kalantar M. Modeling of microfluidic microbial fuel cells using quantitative bacterial transport parameters[J]. Journal of Power Sources, 2017, 342: 1017-1031.
|
18 |
Marcus A K, Torres C I, Rittmann B E. Conduction-based modeling of the biofilm anode of a microbial fuel cell[J]. Biotechnology and Bioengineering, 2007, 98(6): 1171-1182.
|
19 |
Kazemi M, Biria D, Rismani-Yazdi H. Modelling bio-electrosynthesis in a reverse microbial fuel cell to produce acetate from CO2 and H2O[J]. Physical Chemistry Chemical Physics, 2015, 17(19): 12561-12574.
|
20 |
Esfandyari M, Fanaei M A, Gheshlaghi R, et al. Mathematical modeling of two-chamber batch microbial fuel cell with pure culture of Shewanella[J]. Chemical Engineering Research and Design, 2017, 117: 34-42.
|
21 |
Ou S, Kashima H, Aaron D S, et al. Multi-variable mathematical models for the air-cathode microbial fuel cell system[J]. Journal of Power Sources, 2016, 314: 49-57.
|
22 |
Hamelers H V, Ter H A, Stein N, et al. Butler-Volmer-Monod model for describing bio-anode polarization curves[J]. Bioresourcw Technology, 2011, 102(1): 381-387.
|
23 |
Stein N E, Keesman K J, Hamelers H V M, et al. Kinetic models for detection of toxicity in a microbial fuel cell based biosensor[J]. Biosensors & Bioelectronics, 2011, 26(7): 3115-3120.
|
24 |
Beyenal H, Babauta J T. Microscale gradients and their role in electron-transfer mechanisms in biofilms[J]. Biochemical Society Transactions, 2012, 40(6): 1315-1318.
|
25 |
Renslow R, Babauta J, Kuprat A, et al. Modeling biofilms with dual extracellular electron transfer mechanisms[J]. Physical Chemistry Chemical Physics, 2013, 15(44): 19262-19283.
|
26 |
Sedaqatvand R, Esfahany M N, Behzad T, et al. Parameter estimation and characterization of a single-chamber microbial fuel cell for dairy wastewater treatment[J]. Bioresource Technology, 2013, 146C(10): 247-253.
|
27 |
Rittmann B E, Mccarty P L. Environmental Biotechnology: Principles and Applications[M]. New York: McGraw-Hill, 2001.
|
28 |
Bae W, Rittmann B E. Responses of intracellular cofactors to single and dual substrate limitations[J]. Biotechnology and Bioengineering, 1996, 49(6): 690-699.
|
29 |
Bae W, Rittmann B E. A structured model of dual-limitation kinetics[J]. Biotechnology and Bioengineering, 1996, 49(6): 683-689.
|
30 |
Bernardi D M, Verbrugge M W. Mathematical model of a gas electrode bonded to a polymer electrolyte[J]. AIChE Journal, 1991, 37(8): 1151-1163.
|
31 |
Yao S, He Y L, Song B Y, et al. A two-dimensional, two-phase mass transport model for microbial fuel cells[J]. Electrochimica Acta, 2016, 212:201–211.
|
32 |
Marcus A K, Torres C I, Rittmann B E. Analysis of a microbial electrochemical cell using the proton condition in biofilm (PCBIOFILM) model[J]. Bioresource Technology, 2011, 102(1): 253-262.
|
33 |
Picioreanu C, Loosdrecht M C M V, Curtis T P, et al. Model based evaluation of the effect of pH and electrode geometry on microbial fuel cell performance[J]. Bioelectrochemistry, 2010, 78(1): 8-24.
|
34 |
Renslow R, Babauta J, Dohnalkova A, et al. Metabolic spatial variability in electrode-respiring Geobacter sulfurreducens biofilms[J]. Environmetal Science & Technology, 2013, 6(6): 1827-1836.
|
35 |
Malvankar N S, Vargas M, Nevin K P, et al. Tunable metallic-like conductivity in microbial nanowire networks[J]. Nature Nanotechnology, 2011, 6(9): 573-579.
|
36 |
Li C, Lesnik K L, Liu H. Conductive properties of methanogenic biofilms[J]. Bioelectrochemistry, 2018, 119: 220-226.
|
37 |
刘笙. 电气工程基础: 上册[M]. 北京: 科学出版社, 2008.
|
|
Liu S. Fundamentals of Electrical Engineering: Vol. 1 [M]. Beijing: Science Press, 2008.
|