14 |
Jia M X , Chu F , Wang F L , et al . On-line batch process monitoring using batch dynamic kernel principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 2010, 101: 110-122.
|
15 |
Zhang Y W , Li S , Teng Y D . Dynamic processes monitoring using recursive kernel principal component analysis[J]. Chemical Engineering Science, 2012, 72: 78-86.
|
16 |
Zhang H , Tian X , Deng X . Batch process monitoring based on multiway global preserving kernel slow feature analysis[J]. IEEE Access, 2017, 5: 2696-2710.
|
17 |
徐圆, 张伟, 张明卿, 等 . 基于 FEEMD-AE 与反馈极限学习机组合模型预测研究与应用[J]. 化工学报, 2018, 69(3):1064-1070.
|
|
Xu Y , Zhang W , Zhang M Q , et al . Presiction research and application of a combination model based on FEEMD-AE and feedback extreme learning machine[J]. CIESC Journal, 2018, 69(3):1064-1070.
|
18 |
Yan W , Guo P , Liang G , et al . Nonlinear and robust statistical process monitoring based on variant autoencoders[J]. Chemometrics & Intelligent Laboratory Systems, 2016, 158: 31-40.
|
19 |
窦珊, 张广宇, 熊智华 . 基于LSTM时间序列重建的生产装置异常检测[J]. 化工学报, 2019, 70(2): 481-486.
|
|
Dou S , Zhang G Y , Xiong Z H . Anomaly detection of process unit based on LSTM time series reconstruction[J]. CIESC Journal, 2019, 70(2): 481-486.
|
20 |
Greff K , Srivastava R K , Koutník J , et al . LSTM: a search space odyssey[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 28(10): 2222.
|
21 |
Agudo D , Ferrer A , Ferrer J , et al . Multivariate SPC of a sequencing batch reactor for wastewater treatment[J]. Chemometrics and Intelligent Laboratory Systems, 2007, 85(1): 82-93.
|
22 |
Bengio Y , Courville A , Vincent P . Representation learning: a review and new perspectives[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2012, 35(8): 1798-1828.
|
23 |
Hochreiter S , Schmidhuber J . Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
|
1 |
Kerkhof P V D , Gins G , Vanlaer J , et al . Dynamic model-based fault diagnosis for (bio)chemical batch processes[J]. Computers & Chemical Engineering, 2012, 40(1): 12-21.
|
2 |
Nomikos P , Macgregor J F . Monitoring batch processes using multiway principal component analysis[J]. AIChE Journal, 1994, 40(8): 1361-1375.
|
3 |
Nomikos P , Macgregor J F . Multiway partial least squares in monitoring batch progresses[J]. Chemometrics and Intelligent Laboratory Systems, 1995, 30(1): 97-108.
|
4 |
Liu Y , Liang Y , Gao Z , et al . Online flooding supervision in packed towers: an integrated data-driven statistical monitoring method[J]. Chemical Engineering and Technology, 2018, 41(3): 436-446.
|
5 |
胡益, 王丽, 马贺贺, 等 . 基于核PLS方法的非线性过程在线监控[J]. 化工学报, 2011, 62(9): 2555-2561.
|
|
Hu Y , Wang L , Ma H H , et al . Online nonlinear process monitoring using kernel partial least squares[J]. CIESC Journal, 2011, 62(9): 2555-2561.
|
6 |
Qin Y , Zhao C H , Wang X Z , et al . Subspace decomposition and critical phase selection based cumulative quality analysis for multiphase batch processes [J]. Chemical Engineering Science, 2017, 166: 130-143.
|
7 |
常鹏, 王普, 高学金 . 基于统计量模式分析的T-KPLS 间歇过程故障监控[J]. 化工学报, 2015, 66(1): 265-271.
|
|
Chang P , Wang P , Gao X J . Fault monitoring batch process based on statistics pattern analysis of T-KPLS[J]. CIESC Journal, 2015, 66(1): 265-271.
|
8 |
赵春晖, 王福利, 姚远, 等 . 基于时段的间歇过程统计建模、在线监测及质量预报[J]. 自动化学报, 2010, 36(3): 366-374.
|
|
Zhao C H , Wang F L , Yao Y , et al . Phase-based statistical modeling, online monitoring and quality prediction for batch processes[J]. Acta Automatica Sinica, 2010, 36(3): 366-374.
|
9 |
Zhou Z T , Zhong M Y , Wang Y Q . Fault diagnosis observer and fault-tolerant control design for unmanned surface vehicles in network environments[J]. IEEE Access, 2019, 7: 173694-173702.
|
10 |
常鹏, 乔俊飞, 王普, 等 . 基于MKECA的非高斯性和非线性共存的间歇过程监测[J]. 化工学报, 2018, 69(3): 1200-1206.
|
|
Chang P , Qiao J F , Wang P , et al . Montoring non-Gaussian and non-linear batch process based on multi-way kernel entropy component analysis[J]. CIESC Journal, 2018, 69(3): 1200-1206.
|
11 |
Fan J , Qin S J , Wang Y . Online monitoring of nonlinear multivariate industrial processes using filtering KICA-PCA[J]. Control Engineering Practice, 2014, 22: 205-216.
|
12 |
Liu Y , Yang C , Gao Z L , et al . Ensemble deep kernel learning with application to quality prediction in industrial polymerization processes[J]. Chemometrics and Intelligent Laboratory Systems, 2018, 174: 15-21.
|
13 |
Wang T , Wang X , Zhang Y , et al . Fault detection of nonlinear dynamic processes using dynamic kernel principal component analysis[C]// 7th World Congress on Intelligent Control and Automation. 2008: 3009-3014.
|
24 |
Chen Q , Wynne R J , Goulding P , et al . The application of principal compontent analysis and kernel density estimation to enhance process monitoring[J]. Control Engineering Practice, 2000, 8(5): 531-543.
|
25 |
Li G , Qin S J . Comparative study on monitoring schemes for non-Gaussian distributed processes[J]. Journal of Process Control, 2018, 67: 69-82.
|
26 |
Vanlaer J , Gins G , van Impe J F M . Quality assessment of a variance estimator for partial least squares prediction of batch-end quality[J]. Computers & Chemical Engineering, 2013, 52: 230-239.
|
27 |
胡永兵, 高学金, 李亚芬, 等 . 基于仿射传播聚类子集主元分析的间歇过程监测方法[J]. 化工学报, 2016, 67(5): 1989-1997.
|
|
Hu Y B , Gao X J , Li Y F , et al . Subset multiway principal component analysis monitoring for batch process based on affinity propagation clustering[J]. CIESC Journal, 2016, 67(5): 1989-1997.
|
28 |
Lu H , Plataniotis K N , Venetsanopoulos A N . MPCA: multilinear principal component analysis of tensor objects[J]. Neural Networks, IEEE Transactions on, 2008, 19(1): 18-39.
|
29 |
Lv Z , Yan X , Jiang Q . Batch process monitoring based on just-in-time learning and multiple-subspace principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 2014, 137: 128-139.
|
30 |
Birol G , Undey C , Cinar A . A modular simulation package for fed-batch fermentation: penicillin production[J]. Computers and Chemical Engineering, 2002, 26(11): 1553-1565.
|