化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 272-281.DOI: 10.11949/0438-1157.20190915
收稿日期:
2019-08-09
修回日期:
2019-09-29
出版日期:
2020-04-25
发布日期:
2020-04-25
通讯作者:
赵惠忠
作者简介:
赵惠忠(1968—),男,博士,教授,基金资助:
Huizhong ZHAO1(),Min LEI1,Tianhou HUANG1,Tao LIU1,Min ZHANG2
Received:
2019-08-09
Revised:
2019-09-29
Online:
2020-04-25
Published:
2020-04-25
Contact:
Huizhong ZHAO
摘要:
通过研磨将多壁碳纳米管分别与质量分数为30%、40%和50%的无水氯化镁复合,制备了3种不同配比的复合吸附剂MWCNT/MgCl2。采用数字化扫描电子显微镜(SEM)观察复合吸附剂表面材质的结构样貌,通过Hot Disk热常数分析仪测得复合吸附剂的热导率,使用恒温恒湿箱选取具有代表性的温湿度,测试复合吸附剂在不同工况下的水蒸气吸附性能,并采用准二级动力学模型对25℃、50% RH工况下的实验数据进行拟合,应用Autosorb-IQ全自动气体分析仪测试了三种样品在25℃下的等温吸湿曲线。实验结果表明,相同温湿度工况下,随着氯化镁含量增加,复合吸附剂的吸附量提高,25℃、50% RH下氯化镁含量为30%、40%和50%的复合吸附剂M1、M2和M3的吸附量分别为0.62、0.79和0.94 g/g;恒定湿度为50% RH,温度变化为15~35℃时,复合吸附剂吸附量受温度和饱和水蒸气分压力的双重影响,表现为先增加后减小;温度固定为25℃,相对湿度从50% RH增加到80% RH时,复合吸附剂吸附量均大大提升;复合吸附剂在35℃、25% RH中高温、低湿条件下仍表现出较好的吸附能力;在相对压力P/P0为0.3时,M1、M2和M3的吸附量分别为0.24、0.25和0.30 g/g,随着吸附压力的增加,复合吸附剂的吸附量也不断提升,最大吸附量分别达到3.54、3.75和4.42 g/g。复合吸附剂MWCNT/MgCl2的制备研究,为吸附剂的性能研究提供了基础,对太阳能吸附式空气取水的研究具有潜在意义。
中图分类号:
赵惠忠, 雷敏, 黄天厚, 刘涛, 张敏. 复合吸附剂MWCNT/MgCl2的水蒸气吸附性能[J]. 化工学报, 2020, 71(S1): 272-281.
Huizhong ZHAO, Min LEI, Tianhou HUANG, Tao LIU, Min ZHANG. Water vapor adsorption performance of composite adsorbent MWCNT/MgCl2[J]. CIESC Journal, 2020, 71(S1): 272-281.
样品名称 | MgCl2质量分数/% | MgCl2质量/g | MWCNT质量/g |
---|---|---|---|
M1 | 30 | 1.50 | 3.50 |
M2 | 40 | 2.00 | 3.00 |
M3 | 50 | 2.50 | 2.50 |
表1 复合吸附剂的配制参数
Table 1 Preparation parameters of composite adsorbent
样品名称 | MgCl2质量分数/% | MgCl2质量/g | MWCNT质量/g |
---|---|---|---|
M1 | 30 | 1.50 | 3.50 |
M2 | 40 | 2.00 | 3.00 |
M3 | 50 | 2.50 | 2.50 |
样品名称 | 热导率/ (W/(m?K)) | 热扩散率/(mm2/s) | 比热容/(MJ/(kg?K)) |
---|---|---|---|
M1 | 0.058 | 0.860 | 0.068 |
M2 | 0.060 | 0.445 | 0.135 |
M3 | 0.063 | 0.798 | 0.079 |
表2 复合吸附剂的热常数
Table 2 Thermal constants of composite adsorbents
样品名称 | 热导率/ (W/(m?K)) | 热扩散率/(mm2/s) | 比热容/(MJ/(kg?K)) |
---|---|---|---|
M1 | 0.058 | 0.860 | 0.068 |
M2 | 0.060 | 0.445 | 0.135 |
M3 | 0.063 | 0.798 | 0.079 |
样品名称 | 第1次实验 吸附量/(g/g) | 第2次实验 吸附量/(g/g) | 相对偏差/% |
---|---|---|---|
M1 | 0.62 | 0.61 | 1.6 |
M2 | 0.79 | 0.76 | 3.8 |
M3 | 0.94 | 0.91 | 3.2 |
表3 复合吸附剂的吸附量及相对偏差
Table 3 Adsorption capacity and relative deviation of composite adsorbent
样品名称 | 第1次实验 吸附量/(g/g) | 第2次实验 吸附量/(g/g) | 相对偏差/% |
---|---|---|---|
M1 | 0.62 | 0.61 | 1.6 |
M2 | 0.79 | 0.76 | 3.8 |
M3 | 0.94 | 0.91 | 3.2 |
样品名称 | kqe2 | k/(g/(g·min)) | R2 |
---|---|---|---|
M1 | 0.004449 | 0.00807 | 0.99886 |
M2 | 0.005023 | 0.00532 | 0.99806 |
M3 | 0.005221 | 0.00371 | 0.99833 |
表4 准二级动力学模型的参数和相关系数
Table 4 Fitting parameters and R2 of pseudo-second order kinetic model
样品名称 | kqe2 | k/(g/(g·min)) | R2 |
---|---|---|---|
M1 | 0.004449 | 0.00807 | 0.99886 |
M2 | 0.005023 | 0.00532 | 0.99806 |
M3 | 0.005221 | 0.00371 | 0.99833 |
1 | Khedun C P, Flores R S, Rughoonundun H, et al. World water supply and use: challenges for the future[J]. Encyclopedia of Agriculture and Food Systems, 2014, 5: 450-465. |
2 | El-Ghonemy A M K. Fresh water production from/by atmospheric air for arid regions, using solar energy: review[J]. Renewable and Sustainable Energy Reviews, 2012, 16(8): 6384-6422. |
3 | 李强, 郝秀渊. 空气取水技术研究综述[J]. 山西建筑, 2016, 42(31): 124-127. |
Li Q, Hao X Y. A review on extracting water from air[J]. Shanxi Architecture, 2016, 42(31): 124-127. | |
4 | Sultan A. Absorption/regeneration non-conventional system for water extraction from atmospheric air[J]. Renewable Energy, 2004, 29(9): 1515-1535. |
5 | 耿浩清, 石成君, 苏亚欣. 空气取水技术的研究进展[J]. 化工进展, 2011, 30(8): 1664-1669. |
Geng H Q, Shi C J, Su Y X. A review on water extraction from air[J]. Chemical Industry and Engineering Progress, 2011, 30(8): 1664-1669. | |
6 | Hall R C. Production of water from the atmosphere by absorption with subsequent recovery in a solar still[J]. Solar Energy, 1966, 10: 42-45. |
7 | 刘业凤, 王如竹, 夏再忠. 连续循环式吸附空气取水系统[J]. 化工学报, 2004, 55(6): 1002-1005. |
Liu Y F, Wang R Z, Xia Z Z. Continuous cycle unit for extracting water from air[J]. Journal of Chemical Industry and Engineering(China), 2004, 55(6): 1002-1005. | |
8 | 刘金亚, 王佳韵, 王丽伟. 一种吸附式空气取水装置的性能实验[J]. 化工学报, 2016, 67: 46-50. |
Liu J Y, Wang J Y, Wang L W. Performance test of sorption air-to-water device[J]. CIESC Journal, 2016, 67: 46-50. | |
9 | 姜海凤, 侯立安, 张林. 空气取水非常规技术及材料、装备研究进展[J]. 高校化学工程学报, 2018, 32(1): 1-7. |
Jiang H F, Hou L A, Zhang L. Review on unconventional techniques, materials and equipment for water extraction from air[J]. Journal of Chemical Engineering of Chinese Universities, 2018, 32(1): 1-7. | |
10 | Srivastava S, Yadav A. Water generation from atmospheric air by using composite desiccant material through fixed focus concentrating solar thermal power[J]. Solar Energy, 2018, 169: 302-315. |
11 | Yu Q F, Zhao H R, Sun S N, et al. Characterization of MgCl2/AC composite adsorbent and its water vapor adsorption for solar drying system application[J]. Renewable Energy, 2019, 138: 1087-1095. |
12 | Tso C Y, Chao C Y H. Activated carbon, silica-gel and calcium chloride composite adsorbents for energy efficient solar adsorption cooling and dehumidification systems[J]. International Journal of Refrigeration, 2012, 35: 1626-1638. |
13 | de Lange M F, Verouden K J F M, Vlugt T J H, et al. Adsorption-driven heat pumps: the potential of metal-organic frameworks[J]. Chemical Reviews, 2015, 115(22): 12205-12250. |
14 | Hiroyasu F, Felipe G, Zhang Y B, et al. Water adsorption in porous metal-organic frameworks and related materials[J]. Journal of the American Chemical Society, 2014, 136: 4369-4381. |
15 | Casey S P, Aydin D, Riffat S, et al. Salt impregnated desiccant matrices for ‘open thermochemical energy storage—hygrothermal cyclic behaviour and energetic analysis by physical experimentation[J]. Energy & Buildings, 2015, 92: 128-139. |
16 | Jabbari-Hichri A, Bennici S, Auroux A. Effect of aluminum sulfate addition on the thermal storage performance of mesoporous SBA-15 and MCM-41 materials[J]. Solar Energy Materials and Solar Cells, 2016, 149: 232-241. |
17 | Henninger S K, Ernst S J, Gordeeva L, et al. New materials for adsorption heat transformation and storage[J]. Renewable Energy, 2017, 110: 59-68. |
18 | Courbon E, Ans P D, Permyakova A, et al. Further improvement of the synthesis of silica gel and CaCl2 composites: enhancement of energy storage density and stability over cycles for solar heat storage coupled with space heating applications[J]. Solar Energy, 2017, 157: 532-541. |
19 | Jian Y, Ying Y, Chen M, et al. Adsorption isotherms and kinetics of water vapor on novel adsorbents MIL-101(Cr)@GO with super-high capacity[J]. Applied Thermal Engineering, 2015, 84: 118-125. |
20 | Rieth A J, Yang S W, Wang E N, et al. Record atmospheric fresh water capture and heat transfer with a material operating at the water uptake reversibility limit[J]. American Chemical Society, 2017, 3: 668-672. |
21 | Solovyeva M V, Gordeeva L G, Krieger T A, et al. MOF-801 as a promising material for adsorption cooling: equilibrium and dynamics of water adsorption[J]. Energy Conversion and Management, 2018, 174: 356-363. |
22 | Pia K, Rose M, Senkovska I, et al. Characterization of metal-organic frameworks by water adsorption[J]. Microporous and Mesoporous Materials, 2009, 120(3): 325-330. |
23 | Grekova A, Gordeeva L, Aristov Y. Composite sorbents “Li/Ca halogenides inside multi-wall carbon nano-tubes” for thermal energy storage[J]. Solar Energy Materials & Solar Cells, 2016, 155: 176-183. |
24 | Yan T, Li T X, Li H, et al. Experimental study of the ammonia adsorption characteristics on the composite sorbent of CaCl2 and multi-walled carbon nanotubes[J]. International Journal of Refrigeration, 2014, 46: 165-172. |
25 | 赵惠忠, 程俊峰, 唐祥虎, 等. 多壁碳纳米管嵌入13X/MgCl2复合吸附剂的性能实验[J]. 化工学报, 2017, 68(5): 1860-1865. |
Zhao H Z, Cheng J F, Tang X H, et al. Performance of multi wall carbon nanotubes embedded 13X/MgCl2 composite adsorbent[J]. CIESC Journal, 2017, 68(5): 1860-1865. | |
26 | Grekova A D, Gordeeva L G, Lu Z, et al. Composite “LiCl/MWCNT” as advanced water sorbent for thermal energy storage: sorption dynamics[J]. Solar Energy Materials and Solar Cells, 2018, 176: 273-279. |
27 | Vincenza B, Larisa G G, Alexandra D G, et al. Water adsorption equilibrium and dynamics of LiCl/MWCNT/PVA composite for adsorptive heat storage[J]. Solar Energy Materials and Solar Cells, 2019, 193: 133-140. |
28 | 高佼. 不同基质混合吸附剂导热性能和渗透率试验研究[D]. 青岛:青岛科技大学, 2014. |
Gao J. Experimental study on the thermal conductivity and permeability of compound adsorbent of different matrix materials[D]. Qingdao:Qingdao University of Science & Technology, 2014. | |
29 | Zhang H Q, Yuan Y P, Yang F, et al. Inorganic composite adsorbent CaCl2/MWNT for water vapor adsorption[J]. RSC Advances, 2015, 5: 38630-38639. |
30 | 王凯, 吴静怡, 王如竹. 氯化钙/膨胀石墨混合吸附剂导热性能测试[J]. 上海交通大学学报, 2008, 42(1): 106-109. |
Wang K, Wu J Y, Wang R Z. Thermal conductivity measurement of the CaCl2/expanded graphite compound adsorbent[J]. Journal of Shanghai Jiao Tong University, 2008, 42(1): 106-109. | |
31 | 刘泽勤, 赵文元, 王宁. 基于混合吸附剂的解吸温度对吸附式制冷系统性能影响的实验研究[J]. 热科学与技术, 2017, 16(4): 320-324. |
Liu Z Q, Zhao W Y, Wang N. Effect of desorption temperature on adsorption refrigeration system based on hybrid adsorbent[J]. Journal of Thermal Science and Technology, 2017, 16(4): 320-324. | |
32 | 卜宪标, 王令宝, 马伟斌. 硅胶孔径对吸附剂吸湿性能及制冷特性的影响[J]. 哈尔滨工程大学学报, 2012, 33(8): 989-995. |
Bu X B, Wang L B, Ma W B. Effect of silica gel pore size on moisture absorption and refrigeration properties of adsorbent[J]. Journal of Harbin Engineering University, 2012, 33(8): 989-995. | |
33 | 程俊峰, 赵惠忠, 刘雪燕, 等. 新型空气取水用复合吸附剂的配制及吸附性能研究[J]. 化工新型材料, 2017, 45(10): 168-170. |
Cheng J F, Zhao H Z, Liu X Y, et al. Research on the preparation and adsorption property of a new composite adsorbent for extracting water from air[J]. New Chemical Materials, 2017, 45(10): 168-170. | |
34 | 赵惠忠, 唐祥虎, 严昊鑫, 等. 基于13X沸石分子筛/MgCl2的复合吸附剂性能实验研究[J]. 制冷学报, 2016, 37(5): 50-56. |
Zhao H Z, Tang X H, Yan H X, et al. Experimental study on composite adsorbent performance of zeolite 13X/MgCl2[J]. Journal of Refrigeration, 2016, 37(5): 50-56. | |
35 | Plazinski W, Dziuba J, Rudzinski W. Modeling of sorption kinetics: the pseudo-second order equation and the sorbate intraparticle diffusivity [J]. Adsorption-Journal of the International Adsorption Society, 2013, 19(5): 1055-1064. |
36 | 赵惠忠, 李莹莹, 魏存, 等. 吸附式太阳能水管空气取水的特性研究[J]. 可再生能源, 2014, 32(3): 259-264. |
Zhao H Z, Li Y Y, Wei C, et al. The characteristic research on solar water-getting tube for extracting water from air with adsorption[J]. Renewable Energy Resources, 2014, 32(3): 259-264. |
[1] | 潘煜, 王子航, 王佳韵, 王如竹, 张华. 基于可得然-氯化锂复合吸附剂的除湿换热器热湿性能研究[J]. 化工学报, 2023, 74(3): 1352-1359. |
[2] | 石兴达, 陈华艳, 戈亚南, 武春瑞, 贾红友, 吕晓龙. 低界面热阻改性氮化铝和多壁碳纳米管充填PVDF构建杂化三维网络及其导热性能强化[J]. 化工学报, 2022, 73(5): 2262-2269. |
[3] | 王婷婷, 曾玺, 韩振南, 王芳, 武鹏, 许光文. 微型流化床中生物质半焦水蒸气气化反应特性及动力学研究[J]. 化工学报, 2022, 73(1): 294-307. |
[4] | 武鹏, 王芳, 曾玺, 战洪仁, 岳君容, 王婷婷, 许光文. 微型流化床中焦油热裂解和水蒸气重整的反应特性及动力学对比[J]. 化工学报, 2022, 73(1): 362-375. |
[5] | 邓超和, 王佳韵, 李金凤, 刘业凤, 王如竹. 可低温驱动的凝胶复合吸附剂的制备及吸/脱附性能研究[J]. 化工学报, 2021, 72(8): 4401-4409. |
[6] | 李威, 王秋旺, 曾敏. 水合盐基中低温热化学储热材料性能测试及数值研究[J]. 化工学报, 2021, 72(5): 2763-2772. |
[7] | 孙晓明, 沙琪昊, 王陈伟, 周道金. 用于甲醇重整制氢的铜基催化剂研究进展[J]. 化工学报, 2021, 72(12): 5975-6001. |
[8] | 张文波, 凌子夜, 方晓明, 张正国. 新型六水氯化镁-六水硝酸镁/石墨相氮化碳复合相变材料的制备及其热性能研究[J]. 化工学报, 2021, 72(12): 6399-6406. |
[9] | 田军鹏, 沈圆辉, 张东辉, 唐忠利. 规整复合吸附剂真空变压吸附分离CH4/N2工艺模拟与分析[J]. 化工学报, 2021, 72(11): 5675-5685. |
[10] | 王鹏, 刘京雷, 张胜中, 范得权, 张英, 徐宏. 结构化5A分子筛吸附床结构及工艺参数对N2/H2吸附性能的影响[J]. 化工学报, 2020, 71(7): 3114-3122. |
[11] | 李扬, 张扬, 陈宣龙, 龚勋. 钙基吸附剂循环吸附性能对增强式生物质气化制氢的影响研究[J]. 化工学报, 2020, 71(2): 777-787. |
[12] | 王康, 张扬, 胡丽琳, 张海, 吕俊复, 岳光溪. 高分压水蒸气对石灰石脱硫过程的影响作用[J]. 化工学报, 2019, 70(8): 3188-3195. |
[13] | 王锋, 刘艳云, 陈泊宏, 王国强. 操作参数对余热回收甲醇水蒸气重整制氢过程的影响[J]. 化工学报, 2018, 69(S1): 102-107. |
[14] | 黄金, 李晓朋, 王婷, 胡艳鑫, 盛鑫鑫. 基于MWCNTs/PA复合材料铜表面处理的传热性能[J]. 化工学报, 2018, 69(7): 2956-2963. |
[15] | 李箫玉, 董卉, 赵小平, 陈娟, 路春美, 姚洪. 富氧燃烧下水蒸气对矿物捕集铬的影响[J]. 化工学报, 2018, 69(6): 2714-2721. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||