化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 486-493.DOI: 10.11949/0438-1157.20191118
杨东升1(),阿嵘2,张建斌3,王大鹏1,张斌1,徐迎丽1,秦俊杰1,刘淑芬1
收稿日期:
2019-10-07
修回日期:
2019-10-23
出版日期:
2020-04-25
发布日期:
2020-04-25
通讯作者:
杨东升
作者简介:
杨东升(1986—),男,博士,高级工程师,Dongsheng YANG1(),Rong A2,Jianbin ZHANG3,Dapeng WANG1,Bin ZHANG1,Yingli XU1,Junjie QIN1,Shufen LIU1
Received:
2019-10-07
Revised:
2019-10-23
Online:
2020-04-25
Published:
2020-04-25
Contact:
Dongsheng YANG
摘要:
针对未来空间站后续运营与维护发展中对无人自主非金属增材制造技术的应用需求,对空间舱内环境下增材制造过程中的热环境进行了分析,对增材制造装置建模,多热源空间分布与产热特性分析,局部保温及整体强化对流设计热扩散效应与温度场仿真,并对增材制造装置的热控措施开展了试验验证。分析表明:密闭装置功耗72~96 W,在初始温度为20℃条件下装置壁面温度维持在29℃左右,与环境之间的散热效率可达21.6 W·m-2,满足空间增材制造的温度要求,满足装置的温度稳定性与可靠性,为我国空间在轨试验验证给予了一定的理论指导,也为未来舱外环境下的热控设计提供新的思路与方案。
中图分类号:
杨东升, 阿嵘, 张建斌, 王大鹏, 张斌, 徐迎丽, 秦俊杰, 刘淑芬. 航天器舱内环境下非金属增材制造热效应分析[J]. 化工学报, 2020, 71(S1): 486-493.
Dongsheng YANG, Rong A, Jianbin ZHANG, Dapeng WANG, Bin ZHANG, Yingli XU, Junjie QIN, Shufen LIU. Thermal effect analysis of nonmetallic addition manufacturing in spacecraft cabin environment[J]. CIESC Journal, 2020, 71(S1): 486-493.
序号 | 工况 | 电源/W | 打印头/W | 电机/W | 监测 装置/W | 控制器/W | 总功耗/W |
---|---|---|---|---|---|---|---|
1 | 电源待机 | 10.2 | — | — | — | — | 10.2 |
2 | 打印预热 | 10.2+ | 36 | — | — | — | 54 |
3 | 正常打印1 | 10.2+ | 36 | 16 | 10 | 10 | 96 |
4 | 正常打印2 | 10.2+ | — | 16 | 10 | 10 | 72 |
表1 不同工况下各部件功耗测试结果
Table 1 Power consumption test result for each component under different working conditions
序号 | 工况 | 电源/W | 打印头/W | 电机/W | 监测 装置/W | 控制器/W | 总功耗/W |
---|---|---|---|---|---|---|---|
1 | 电源待机 | 10.2 | — | — | — | — | 10.2 |
2 | 打印预热 | 10.2+ | 36 | — | — | — | 54 |
3 | 正常打印1 | 10.2+ | 36 | 16 | 10 | 10 | 96 |
4 | 正常打印2 | 10.2+ | — | 16 | 10 | 10 | 72 |
序号 | 装置 | 实测温度/℃ | 仿真结果/℃ | 温度差/℃ |
---|---|---|---|---|
1 | 电源 | 15.23 | 13.51 | 1.72 |
2 | 电路板1 | 17.12 | 14.05 | 3.07 |
3 | 电路板2 | 10.36 | 8.67 | 1.69 |
4 | 打印头支架 | 5.35 | 8.92 | 3.57 |
5 | 打印头上部 | 29.68 | 28.43 | 1.25 |
6 | 送丝电机 | 5.63 | 8.16 | 1.53 |
7 | X电机 | 15.17 | 16.23 | 1.06 |
8 | Y电机 | 10.64 | 11.81 | 1.17 |
9 | Z电机 | 12.56 | 12.21 | 0.35 |
表2 低温(-5℃)下的实测温度与仿真对比分析
Table 2 Comparison of test and simulated temperature at -5℃
序号 | 装置 | 实测温度/℃ | 仿真结果/℃ | 温度差/℃ |
---|---|---|---|---|
1 | 电源 | 15.23 | 13.51 | 1.72 |
2 | 电路板1 | 17.12 | 14.05 | 3.07 |
3 | 电路板2 | 10.36 | 8.67 | 1.69 |
4 | 打印头支架 | 5.35 | 8.92 | 3.57 |
5 | 打印头上部 | 29.68 | 28.43 | 1.25 |
6 | 送丝电机 | 5.63 | 8.16 | 1.53 |
7 | X电机 | 15.17 | 16.23 | 1.06 |
8 | Y电机 | 10.64 | 11.81 | 1.17 |
9 | Z电机 | 12.56 | 12.21 | 0.35 |
1 | 陈花玲, 罗斌, 朱子才, 等. 4D打印: 智能材料与结构增材制造技术的研究进展[J]. 西安交通大学学报, 2018, 52(2): 1-12. |
Chen H L, Luo B, Zhu Z C, et al. 4D Printing-progress in additive manufacturing technology and application of smart materials and structure [J]. Journal of Xi an Jiaotong University, 2018, 52(2): 1-12. | |
2 | 李昂, 刘雪峰, 俞波, 等. 金属增材制造技术的关键因素及发展方向[J]. 工程科学学报, 2019, 41(2): 20-34. |
Li A, Liu X F, Yu B, et al. Key factors and developmental directions with regard to metal additive manufacturing [J]. Chinese Journal of Engineering, 2019, 41(2): 20-34. | |
3 | 周长平, 林枫, 杨浩, 等. 增材制造技术在船舶制造领域的应用进展[J]. 船舶工程, 2017, (2): 86-93. |
Zhou C P, Lin F, Yang H, et al. Application progress of additive manufacturing technology in shipbuilding field [J]. Ship Engineering, 2017, (2): 86-93. | |
4 | 沈理达, 田宗军, 谢德巧, 等. 金属离子液束流增材制造研究现状及其发展[J]. 航空制造技术, 2018, 61(17): 28-35. |
Shen L D, Tian Z J, Xie D Q, et al. Research status and development in ionic liquid beam additive manufacturing [J]. Aeronautical Manufacturing Technology, 2018, 61(17): 28-35. | |
5 | 李权, 王福德, 王国庆, 等. 航空航天轻质金属材料电弧熔丝增材制造技术[J]. 航空制造技术, 2018, 61(3): 74-82. |
Li Q, Wang F D, Wang G Q, et al. Wire and arc additive manufacturing of lightweight metal components in aeronautics and astronautics [J]. Aeronautical Manufacturing Technology, 2018, 61(3): 74-82. | |
6 | Rawal S, Brantley J, Karabudak N. Additive manufacturing of Ti-6Al-4V alloy components for spacecraft applications [C]// International Conference on Recent Advances in Space Technologies. 2013. |
7 | Onzalez-G J, Cano S, Schuschnigg S, et al. Additive manufacturing of metallic and ceramic components by the material extrusion of highly-filled polymers: a review and future perspectives [J]. Materials, 2018, 11(5): 840. |
8 | 刘亦飞, 李亮, 王功, 等. 空间金属增材制造技术应用[J]. 空间科学学报, 2018, 38(3): 380-385. |
Liu Y F, Li L, Wang G, et al. Application of metal additive manufacturing technology for space [J]. Chinese Journal of Space Science, 2018, 38(3): 380-385. | |
9 | Rehnmark F, Pryor M, Holmes B, et al. Development of a deployable nonmetallic boom for reconfigurable systems of small spacecraft [C]// AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, & Materials Conference. 2007. |
10 | Savi P. High speed digital lines routed on non-metallic spacecraft structures [C]// International Symposium on Electromagnetic Compatibility. 2014. |
11 | Schumacher C, Bickel B, Rys J, et al. Microstructures to control elasticity in 3D printing [J]. ACM Trans. Graph., 2015, 34(4): 136. |
12 | Alex E. Notes on Extraterrestrial applications of 3D-printing with regard to self-replicating machines [C]// 2015 IEEE International Conference on Automation Science and Engineering (CASE). Gothenburg, Sweden, 2015: 930-935. |
13 | Hwang S, Reyes E I, Moon K, et al. Thermo-mechanical characterization of metal/polymer composite filaments and printing parameter study for fused deposition modeling in the 3D printing process [J]. Journal of Electronic Materials, 2015, 44(3): 771-777. |
14 | Zhang T, Miyamoto C M. 3D printing: a cost effective and timely approach to manufacturing of low-thrust engines [C]// Propulsion and Energy Forum, 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference.2014: 1178-1200. |
15 | Mallory M J, Mary J W, Kenneth G C. 3D printing in zero-G ISS technology demonstration [C]// AIAA SPACE Conference and Exposition. 2014: 2054-2058. |
16 | 姜月娟, 卢秉恒, 方学伟, 等. 基于3D打印的网络化集散制造模式研究[J]. 计算机集成制造技术, 2016, 22(6): 1424-1433. |
Jiang Y J, Lu B H, Fang X W, et al. 3D printing based on internet collect manufacturing mode [J]. Computer Integrated Manufacturing System, 2016, 22(6): 1424-1433. | |
17 | Du J, Wang X, Bai H, et al. Numerical analysis of fused-coating metal additive manufacturing [J]. International Journal of Thermal Sciences, 2017, 114: 342-351. |
18 | Gu D D, Meiners W, Wissenbach K, et al. Laser additive manufacturing of metallic components: materials, processes and mechanisms [J]. International Materials Reviews, 2013, 57(3): 133-164. |
19 | 张颖一, 张伟, 王功. 太空增材制造的技术需求和应用模式探索[J]. 中国材料进展, 2017, 36(7): 503-511. |
Zhang Y Y, Zhang W, Wang G. Discussion on the technical demands and application modes of additive manufacturing in space [J]. Materials China, 2017, 36(7): 503-511. | |
20 | Kim Y, Lee J, Oh J H. Fabrication of fine metal patterns using an additive material extrusion process with a molten metal [J]. Microelectronic Engineering, 2018, 191: 10-15. |
21 | 吴伟伟, 黄筱调, 方成刚, 等. 水泥3D打印喷头内浆体流动的MRT-LBM分析[J]. 南京工业大学学报, 2018, 40(5): 79-84. |
Wu W W, Huang X D, Fang C G, et al. Multiple-relaxation-time lattice Boltzmann method analyses for paste flow in cement-3D printing extruder [J]. Journal of Nanjing Tech University, 2018, 40(5): 79-84. | |
22 | Zhou X, Zhang H, Wang G, et al. Three-dimensional numerical simulation of arc and metal transport in arc welding based additive manufacturing [J]. International Journal of Heat & Mass Transfer, 2016, 103: 521-537. |
23 | Lissianski V V, Zamansky V M, Maly P M. Effect of metal-containing additives on NOx reduction in combustion and reburning [J]. Combustion & Flame, 2001, 125(3): 1118-1127. |
24 | Handley D, Heggs P J. The effect of thermal conductivity of the packing material on transient heat transfer in a fixed bed [J]. International Journal of Heat & Mass Transfer, 1969, 12(5): 549-570. |
25 | Sateesh N H, Mohankumar G C, Krishna P. Effect of heat treatment on coated ceramics for composite formation by laser processing [J]. International Journal of Advances in Engineering Sciences, 2014, 4(4): 14-18. |
26 | Daryabeigi K. Thermal analysis and design optimization of multilayer insulation for reentry aerodynamic heating [J]. Journal of Spacecraft and Rockets, 2002, 39(4): 509-514. |
27 | 付桂翠, 王香芬, 姜同敏. 高可靠性航空电子设备热分析中的有限体积法[J]. 北京航空航天大学学报, 2006, 32(6), 716-720. |
Fu G C, Wang X F, Jiang T M. Finite volume method in thermal analysis of avionics [J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(6): 716-720. | |
28 | Bernard N, Egbert B. Recent applications and future development trends in electromagnetic processing of metals and non-metallic materials [J]. Journal of Iron and Steel Research (International), 2012, (S1): 50-54. |
29 | Yu H Z, Jones M E, Brady G W, et al. Non-beam-based metal additive manufacturing enabled by additive friction stir deposition [J]. Scripta Materialia, 2018, 153: 122-130. |
30 | Campoli G, Borleffs M S, Yavari S A, et al. Mechanical properties of open-cell metallic biomaterials manufactured using additive manufacturing [J]. Materials & Design, 2013, 49: 957-965. |
31 | Shehatta I. Cyclodextrins as enhancers of the aqueous solubility of the anthelmintic drug mebendazole: thermodynamic considerations [J]. Monatshefte Für Chemie, 2002, 133(9): 1239-1247. |
32 | Gonzalez G J, Cano S, Schuschnigg S, et al. Additive manufacturing of metallic and ceramic components by the material extrusion of highly-filled polymers: a review and future perspectives [J]. Materials, 2018, 840(11): 1-36. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 常明慧, 王林, 苑佳佳, 曹艺飞. 盐溶液蓄能型热泵循环特性研究[J]. 化工学报, 2023, 74(S1): 329-337. |
[3] | 张化福, 童莉葛, 张振涛, 杨俊玲, 王立, 张俊浩. 机械蒸汽压缩蒸发技术研究现状与发展趋势[J]. 化工学报, 2023, 74(S1): 8-24. |
[4] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[5] | 张曼铮, 肖猛, 闫沛伟, 苗政, 徐进良, 纪献兵. 危废焚烧处理耦合有机朗肯循环系统工质筛选与热力学优化[J]. 化工学报, 2023, 74(8): 3502-3512. |
[6] | 段重达, 姚小伟, 朱家华, 孙静, 胡南, 李广悦. 环境因素对克雷白氏杆菌诱导碳酸钙沉淀的影响[J]. 化工学报, 2023, 74(8): 3543-3553. |
[7] | 吕龙义, 及文博, 韩沐达, 李伟光, 高文芳, 刘晓阳, 孙丽, 王鹏飞, 任芝军, 张光明. 铁基导电材料强化厌氧去除卤代有机污染物:研究进展及未来展望[J]. 化工学报, 2023, 74(8): 3193-3202. |
[8] | 卫雪岩, 钱勇. 微米级铁粉燃料中低温氧化反应特性及其动力学研究[J]. 化工学报, 2023, 74(6): 2624-2638. |
[9] | 姚晓宇, 沈俊, 李健, 李振兴, 康慧芳, 唐博, 董学强, 公茂琼. 流体气液临界参数测量方法研究进展[J]. 化工学报, 2023, 74(5): 1847-1861. |
[10] | 陈科, 杜理, 曾英, 任思颖, 于旭东. 四元体系LiCl+MgCl2+CaCl2+H2O 323.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(5): 1896-1903. |
[11] | 毛元敬, 杨智, 莫松平, 郭浩, 陈颖, 罗向龙, 陈健勇, 梁颖宗. C6~C10烷醇的SAFT-VR Mie状态方程参数回归及其热物性研究[J]. 化工学报, 2023, 74(3): 1033-1041. |
[12] | 陈瑞哲, 程磊磊, 顾菁, 袁浩然, 陈勇. 纤维增强树脂复合材料化学回收技术研究进展[J]. 化工学报, 2023, 74(3): 981-994. |
[13] | 程文婷, 李杰, 徐丽, 程芳琴, 刘国际. AlCl3·6H2O在FeCl3、CaCl2、KCl及KCl–FeCl3溶液中溶解度的实验及预测[J]. 化工学报, 2023, 74(2): 642-652. |
[14] | 查坦捷, 杨涵, 秦荷杰, 关小红. 仿生材料的构建及其在水环境化学领域中的研究进展[J]. 化工学报, 2023, 74(2): 585-598. |
[15] | 马语峻, 刘向军. 多孔陶瓷膜烟气水分回收理论与模型研究[J]. 化工学报, 2022, 73(9): 4103-4112. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||