化工学报 ›› 2023, Vol. 74 ›› Issue (8): 3193-3202.DOI: 10.11949/0438-1157.20230441
吕龙义1(), 及文博1, 韩沐达1, 李伟光2, 高文芳1(
), 刘晓阳1(
), 孙丽1, 王鹏飞1, 任芝军1, 张光明1
收稿日期:
2023-05-05
修回日期:
2023-07-14
出版日期:
2023-08-25
发布日期:
2023-10-18
通讯作者:
高文芳,刘晓阳
作者简介:
吕龙义(1989—),男,博士研究生,副教授,lvlongyi@hebut.edu.cn
基金资助:
Longyi LYU1(), Wenbo JI1, Muda HAN1, Weiguang LI2, Wenfang GAO1(
), Xiaoyang LIU1(
), Li SUN1, Pengfei WANG1, Zhijun REN1, Guangming ZHANG1
Received:
2023-05-05
Revised:
2023-07-14
Online:
2023-08-25
Published:
2023-10-18
Contact:
Wenfang GAO, Xiaoyang LIU
摘要:
随着工农业发展,越来越多的卤代污染物被排放到环境中。鉴于卤代污染物高毒性及强稳定性的特点,如何高效地去除环境中卤代污染物成为国内外学者关注的焦点。厌氧生物处理因为其绿色高效的特点,近年来常被用于去除环境中的卤代污染物,其中微生物胞外电子传递是影响脱氯效率的重要因素。铁基导电材料比表面积大,导电性强,而且能够提高脱卤相关菌的微生物活性,可强化胞外电子传递过程,加速厌氧脱卤效率的同时提高甲烷产量。本文综述了铁基导电材料强化厌氧脱卤的研究现状,重点对铁基导电材料促进电子转移机制进行了论述。探讨了目前铁基导电材料相关研究存在的问题,并对铁基材料促进厌氧脱卤的研究方向进行了展望。
中图分类号:
吕龙义, 及文博, 韩沐达, 李伟光, 高文芳, 刘晓阳, 孙丽, 王鹏飞, 任芝军, 张光明. 铁基导电材料强化厌氧去除卤代有机污染物:研究进展及未来展望[J]. 化工学报, 2023, 74(8): 3193-3202.
Longyi LYU, Wenbo JI, Muda HAN, Weiguang LI, Wenfang GAO, Xiaoyang LIU, Li SUN, Pengfei WANG, Zhijun REN, Guangming ZHANG. Enhanced anaerobic removal of halogenated organic pollutants by iron-based conductive materials: research progress and future perspectives[J]. CIESC Journal, 2023, 74(8): 3193-3202.
卤代污染物 | 英文名称 | 分子式 | 应用领域 |
---|---|---|---|
二氯乙烷 | dichloroethane | C2H4Cl2 | 工业溶剂、橡胶、杀虫剂 |
三氯乙烯 | trichloroethylene | C2HCl3 | 杀虫剂、香料、电子元件清洗剂 |
四溴化碳 | tetrabromomethane | CBr4 | 麻醉剂、制冷剂、染料中间体 |
五氯酚 | pentachlorophenol | C6HCl5O | 杀菌剂、合成塑料 |
2,4,6-三氯酚 | 2,4,6-trichlorophenol | C6H3Cl3O | 杀菌剂、防腐剂 |
2,4-二氯酚 | 2,4-dichlorophenol | C6H4Cl2O | 工业溶剂、杀虫剂、杀菌剂 |
四溴双酚A | tetrabromobisphenol A | C15H12Br4O2 | 阻燃剂 |
十溴二苯醚 | decabromodiphenyl oxide | C12Br10O | 阻燃剂 |
四氟乙烯 | tetrafluoroethene | C2F4 | 耐热塑料、灭火剂 |
氟化氢钠 | sodium hydrogen difluoride | NaHF2 | 食品添加剂、防腐剂 |
表1 常见的卤代污染物及其应用领域
Table 1 Common halogenated pollutants and their application fields
卤代污染物 | 英文名称 | 分子式 | 应用领域 |
---|---|---|---|
二氯乙烷 | dichloroethane | C2H4Cl2 | 工业溶剂、橡胶、杀虫剂 |
三氯乙烯 | trichloroethylene | C2HCl3 | 杀虫剂、香料、电子元件清洗剂 |
四溴化碳 | tetrabromomethane | CBr4 | 麻醉剂、制冷剂、染料中间体 |
五氯酚 | pentachlorophenol | C6HCl5O | 杀菌剂、合成塑料 |
2,4,6-三氯酚 | 2,4,6-trichlorophenol | C6H3Cl3O | 杀菌剂、防腐剂 |
2,4-二氯酚 | 2,4-dichlorophenol | C6H4Cl2O | 工业溶剂、杀虫剂、杀菌剂 |
四溴双酚A | tetrabromobisphenol A | C15H12Br4O2 | 阻燃剂 |
十溴二苯醚 | decabromodiphenyl oxide | C12Br10O | 阻燃剂 |
四氟乙烯 | tetrafluoroethene | C2F4 | 耐热塑料、灭火剂 |
氟化氢钠 | sodium hydrogen difluoride | NaHF2 | 食品添加剂、防腐剂 |
图1 铁基材料强化厌氧去除卤代污染物的机制(a);脱卤过程中铁的价态变化及电子的传递方向(b)
Fig.1 Mechanism of enhanced anaerobic removal of halogenated pollutants by iron-based materials (a); Valence change of iron and electron transfer direction during dehalogenation (b)
图2 互营细菌通过导电菌毛和细胞色素进行DIET (a);利用导电材料进行DIET (b)
Fig.2 DIET by mutualistic bacteria via conductive pili and cytochrome (a); DIET using conductive materials (b)
1 | Maqsood Q, Sumrin A, Waseem R, et al. Bioengineered microbial strains for detoxification of toxic environmental pollutants[J]. Environmental Research, 2023, 227: 115665. |
2 | 王晶晶, 李秀颖, 宋玉芳, 等. 环境因子对厌氧微生物脱卤的影响研究进展[J]. 微生物学通报, 2022, 49(10): 4357-4381. |
Wang J J, Li X Y, Song Y F, et al. Research progress on the influence of environmental factors on dehalogenation by anaerobic microorganisms[J]. Microbiology China, 2022, 49(10): 4357-4381. | |
3 | Du Y, Lv X T, Wu Q Y, et al. Formation and control of disinfection byproducts and toxicity during reclaimed water chlorination: a review [J]. Journal of Environmental Sciences, 2017, 58: 51-63. |
4 | Rusyn I, Chiu W A, Lash L H, et al. Trichloroethylene: mechanistic, epidemiologic and other supporting evidence of carcinogenic hazard[J]. Pharmacology & Therapeutics, 2014, 141(1): 55-68. |
5 | She Y Z, Wu J P, Zhang Y, et al. Bioaccumulation of polybrominated diphenyl ethers and several alternative halogenated flame retardants in a small herbivorous food chain[J]. Environmental Pollution, 2013, 174: 164-170. |
6 | 张杰, 陆雅海. 互营氧化产甲烷微生物种间电子传递研究进展[J]. 微生物学通报, 2015, 42(5): 920-927. |
Zhang J, Lu Y H. A review of interspecies electron transfer in syntrophic-methanogenic associations[J]. Microbiology China, 2015, 42(5): 920-927 | |
7 | Yu J L, Xiao K, Xu H, et al. Spectroscopic fingerprints profiling the polysaccharide/protein/humic architecture of stratified extracellular polymeric substances (EPS) in activated sludge[J]. Water Research, 2023, 235: 119866. |
8 | Gahlot P, Ahmed B, Tiwari S B, et al. Conductive material engineered direct interspecies electron transfer (DIET) in anaerobic digestion: mechanism and application[J]. Environmental Technology & Innovation, 2020, 20: 101056. |
9 | Mun H, Ri C, Liu Q L, et al. Ball-milled PET plastic char as an electron shuttle accelerated anaerobic degradation of 2,4,6-trichlorophenol in water environment[J]. Science of the Total Environment, 2023, 885: 163740. |
10 | Zhao Z Q, Li Y, Quan X, et al. Towards engineering application: potential mechanism for enhancing anaerobic digestion of complex organic waste with different types of conductive materials[J]. Water Research, 2017, 115: 266-277. |
11 | Ren Z J, Ma P Y, Lv L Y, et al. Application of exogenous redox mediators in anaerobic biological wastewater treatment: a critical review[J]. Journal of Cleaner Production, 2022, 372: 133527. |
12 | Yin Q D, Wu G X. Advances in direct interspecies electron transfer and conductive materials: electron flux, organic degradation and microbial interaction[J]. Biotechnology Advances, 2019, 37(8): 107443. |
13 | Zhao W X, Yang H Z, He S F, et al. A review of biochar in anaerobic digestion to improve biogas production: performances, mechanisms and economic assessments[J]. Bioresource Technology, 2021, 341: 125797. |
14 | Lan H X, Ji L Y, Li K, et al. Mediated anaerobic system performance, co-metabolizing flora and electron transfer by graphene oxide supported zero-valent iron composite[J]. Journal of Environmental Chemical Engineering, 2023, 11(2): 109631. |
15 | Xu Y G, Wang M W, Yu Q L, et al. Enhancing methanogenesis from anaerobic digestion of propionate with addition of Fe oxides supported on conductive carbon cloth[J]. Bioresource Technology, 2020, 302: 122796. |
16 | Ye J, Hu A D, Ren G P, et al. Enhancing sludge methanogenesis with improved redox activity of extracellular polymeric substances by hematite in red mud[J]. Water Research, 2018, 134: 54-62. |
17 | Wu L, Patton S D, Liu H Z. Mechanisms of oxidative removal of 1,4-dioxane via free chlorine rapidly mixing into monochloramine: implications on water treatment and reuse[J]. Journal of Hazardous Materials, 2022, 440: 129760. |
18 | Hu Z T, Hu S H, Hong P Y, et al. Impact of electrochemically generated iron on the performance of an anaerobic wastewater treatment process[J]. Science of the Total Environment, 2023, 875: 162628. |
19 | 刘翠英, 王宇, 马煜春. 铁氧化物与丙酸对土壤中六氯苯厌氧降解影响[J]. 中国环境科学, 2018, 38(3): 1073-1080. |
Liu C Y, Wang Y, Ma Y C. Effect of iron oxide and propionic acid on anaerobic degradation of hexachlorobenzene in soil[J]. China Environmental Science, 2018, 38(3): 1073-1080. | |
20 | 孔殿超, 周跃飞, 陈天虎, 等. 针铁矿、磁铁矿和石膏对2,4-二氯苯酚厌氧降解的影响[J]. 环境科学, 2017, 38(7): 2875-2882. |
Kong D C, Zhou Y F, Chen T H, et al. Effects of goethite, magnetite and gypsum on the anaerobic degradation of 2, 4-dichlorophenol[J]. Environmental Science, 2017, 38(7): 2875-2882. | |
21 | Leitão P, Aulenta F, Rossetti S, et al. Impact of magnetite nanoparticles on the syntrophic dechlorination of 1,2-dichloroethane[J]. Science of the Total Environment, 2018, 624: 17-23. |
22 | Aulenta F, Fazi S, Majone M, et al. Electrically conductive magnetite particles enhance the kinetics and steer the composition of anaerobic TCE-dechlorinating cultures[J]. Process Biochemistry, 2014, 49(12): 2235-2240. |
23 | 周洪波, 陈坚. 五氯苯酚对厌氧颗粒污泥微生物的毒性作用[J]. 中南工业大学学报(自然科学版), 2002(5): 469-472. |
Zhou H B, Chen J. Toxicity of pentachlorophenol to microorganisms of anaerobic granular sludge[J]. Journal of Central South University of Technology (Natural Science), 2002, 33(5): 469-472. | |
24 | Li Q, Chen Z S, Wang H H, et al. Removal of organic compounds by nanoscale zero-valent iron and its composites[J]. Science of the Total Environment, 2021, 792: 148546. |
25 | Li J H, Yang L X, Li J Q, et al. Anchoring nZVI on metal-organic framework for removal of uranium(Ⅵ) from aqueous solution[J]. Journal of Solid State Chemistry, 2019, 269: 16-23. |
26 | Qiu M Q, Wang M, Zhao Q Z, et al. XANES and EXAFS investigation of uranium incorporation on nZVI in the presence of phosphate[J]. Chemosphere, 2018, 201: 764-771. |
27 | Wang Y, Jiang W, Tang Y Q, et al. Biochar-supported sulfurized nanoscale zero-valent iron facilitates extensive dechlorination and rapid removal of 2, 4, 6-trichlorophenol in aqueous solution[J]. Chemosphere, 2023, 332: 138835. |
28 | Dominguez C M, Romero A, Fernandez J, et al. In situ chemical reduction of chlorinated organic compounds from lindane production wastes by zero valent iron microparticles[J]. Journal of Water Process Engineering, 2018, 26: 146-155. |
29 | Chen X Q, Bai C H, Li Z L, et al. Directional bioelectrochemical dechlorination of trichloroethene to valuable ethylene by introduction poly-3-hydroxybutyrate as a slow release carbon source[J]. Chemical Engineering Journal, 2023, 455: 140737. |
30 | 廖娣劼, 杨琦, 李俊錡. 零价铁降解4-氯硝基苯动力学研究[J]. 环境科学, 2012, 33(2): 469-475. |
Liao D J, Yang Q, Lee C. Kinetic study of 4-chloronitrobenzene degradation by zero-valent iron[J]. Environmental Science, 2012, 33(2): 469-475. | |
31 | Yang X M, Zhang C, Liu F, et al. Diversity in the species and fate of chlorine during TCE reduction by two nZVI with non-identical anaerobic corrosion mechanism[J]. Chemosphere, 2019, 230: 230-238. |
32 | Shih Y H, Chou H L, Peng Y H, et al. Synergistic effect of microscale zerovalent iron particles combined with anaerobic sludges on the degradation of decabromodiphenyl ether[J]. Bioresource Technology, 2012, 108: 14-20. |
33 | Peng Y H, Chen Y J, Chang M, et al. The effect of zerovalent iron on the microbial degradation of hexabromocyclododecane[J]. Chemosphere, 2018, 200: 419-426. |
34 | Chen Z Z, Tang X J, Qiao W J, et al. Nanoscale zero-valent iron reduction coupled with anaerobic dechlorination to degrade hexachlorocyclohexane isomers in historically contaminated soil[J]. Journal of Hazardous Materials, 2020, 400: 123298. |
35 | 范利花, 李辉, 林匡飞, 等. 零价铁-厌氧活性污泥耦合降解三氯乙烷和二𫫇烷复合污染[J]. 华东理工大学学报(自然科学版), 2016, 42(1): 72-78. |
Fan L H, Li H, Lin K F, et al. Degradation of trichloroethane and dioxane co-contamination via a ZVI-anaerobic microbe combined system[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2016, 42(1): 72-78. | |
36 | Pan Y, Leung P Y, Li Y Y, et al. Enhancement effect of nanoscale zero-valent iron addition on microbial degradation of BDE-209 in contaminated mangrove sediment[J]. Science of the Total Environment, 2021, 781: 146702. |
37 | 姚春洪, 韦志鹏, 车林轩, 等. 导电材料强化厌氧生物处理过程的研究进展[J]. 水处理技术, 2022, 48(8): 23-28. |
Yao C H, Wei Z P, Che L X, et al. Research progress of conductive materials in enhancing anaerobic biological treatment process[J]. Technology of Water Treatment, 2022, 48(8): 23-28. | |
38 | Wang Y Q, Wang H W, Chen H B, et al. Zero-valent iron effectively enhances valuable products generated from wastewater containing 2-bromo-4,6-dinitroaniline during hydrolysis acidification process: performance and mechanisms[J]. Journal of Hazardous Materials, 2023, 445: 130515. |
39 | Zhu X M, Wang X, Li N, et al. Bioelectrochemical system for dehalogenation: a review[J]. Environmental Pollution, 2022, 293: 118519. |
40 | Corsino S F, Capodici M, Torregrossa M, et al. Physical properties and extracellular polymeric substances pattern of aerobic granular sludge treating hypersaline wastewater[J]. Bioresource Technology, 2017, 229: 152-159. |
41 | Lin H H, Sun S C, Lin Z P, et al. Bio-carrier-enhanced aerobic granulation: effects on the extracellular polymeric substances production and microorganism community[J]. Chemosphere, 2021, 280: 130756. |
42 | Ghotekar S, Pansambal S, Bilal M, et al. Environmentally friendly synthesis of Cr2O3 nanoparticles: characterization, applications and future perspective ─ a review[J]. Case Studies in Chemical and Environmental Engineering, 2021, 3: 100089. |
43 | Lu J, Chang J, Lee D. Adding carbon-based materials on anaerobic digestion performance: a mini-review[J]. Bioresource Technology, 2020, 300: 122696. |
44 | Jiang Q, Zheng Z Y, Zhang Y, et al. Key properties identification of biochar material in anaerobic digestion of sewage sludge for enhancement of methane production[J]. Journal of Environmental Chemical Engineering, 2023, 11(3): 109850. |
45 | Kilduff J E, Karanfil T. Trichloroethylene adsorption by activated carbon preloaded with humic substances: effects of solution chemistry[J]. Water Research, 2002, 36(7): 1685-1698. |
46 | Zhang L Q, Chen Z K, Zhu S S, et al. Effects of biochar on anaerobic treatment systems: some perspectives[J]. Bioresource Technology, 2023, 367: 128226. |
47 | Lyu H H, Tang J C, Shen B X, et al. Development of a novel chem-bio hybrid process using biochar supported nanoscale iron sulfide composite and Corynebacterium variabile HRJ4 for enhanced trichloroethylene dechlorination[J]. Water Research, 2018, 147: 132-141. |
48 | 吉昌铃, 孟梁, 邓欢, 等. 纳米零价铁-聚乳酸-生物炭复合材料协同微生物去除水中1,1,1-三氯乙烷[J]. 环境工程学报, 2019, 13(8): 1909-1917. |
Ji C L, Meng L, Deng H, et al. 1, 1, 1-Trichloroethane removal from water by nano-zero valent iron-polylactic acid-biochar composite coupled with microorganism[J]. Chinese Journal of Environmental Engineering, 2019, 13(8): 1909-1917. | |
49 | Dong H R, Deng J M, Xie Y K, et al. Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(Ⅵ) removal from aqueous solution[J]. Journal of Hazardous Materials, 2017, 332: 79-86. |
50 | Dong H R, He Q, Zeng G M, et al. Chromate removal by surface-modified nanoscale zero-valent iron: effect of different surface coatings and water chemistry[J]. Journal of Colloid and Interface Science, 2016, 471: 7-13. |
51 | Xie Y K, Dong H R, Zeng G M, et al. The interactions between nanoscale zero-valent iron and microbes in the subsurface environment: a review[J]. Journal of Hazardous Materials, 2017, 321: 390-407. |
52 | Dong H, Zhang C, Hou K, et al. Removal of trichloroethylene by biochar supported nanoscale zero-valent iron in aqueous solution[J]. Separation and Purification Technology, 2017, 188: 188-196. |
53 | Li J J, Li C X, Li Y L, et al. Elucidation of high removal efficiency of dichlorophen wastewater in anaerobic treatment system with iron/carbon mediator[J]. Journal of Cleaner Production, 2022, 330: 129854. |
54 | Lu Y, Zhang S J, Liu Q, et al. Nitrobenzene reduction promoted by the integration of carbon nanotubes and Geobacter sulfurreducens [J]. Environmental Pollution, 2023, 325: 121444. |
55 | Xu J, Lv X S, Li J D, et al. Simultaneous adsorption and dechlorination of 2,4-dichlorophenol by Pd/Fe nanoparticles with multi-walled carbon nanotube support[J]. Journal of Hazardous Materials, 2012, 225/226: 36-45. |
56 | Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon, 2007, 45(7): 1558-1565. |
57 | Sahu R S, Li D L, Doong R A. Unveiling the hydrodechlorination of trichloroethylene by reduced graphene oxide supported bimetallic Fe/Ni nanoparticles[J]. Chemical Engineering Journal, 2018, 334: 30-40. |
58 | 陆海楠, 理鹏, 郭琳, 等. 改性生物炭负载零价铁对土壤中三氯乙烯的去除及微生物响应[J]. 环境科学, DOI: 10.13227/j.hjkx.202207273 . |
Lu H N, Li P, Guo L, et al. Effects of modified biochar-supported zero-valent iron on the removal of trichloroethylene and responses of microbial community in soil[J]. Environmental Science, DOI: 10.13227/j.hjkx.202207273 . | |
59 | Zhao Z Q, Li Y, Zhang Y B, et al. Sparking anaerobic digestion: promoting direct interspecies electron transfer to enhance methane production[J]. iScience, 2020, 23(12): 101794.. |
60 | Zhao Z Q, Zhang Y B, Li Y, et al. Potentially shifting from interspecies hydrogen transfer to direct interspecies electron transfer for syntrophic metabolism to resist acidic impact with conductive carbon cloth[J]. Chemical Engineering Journal, 2017, 313: 10-18. |
61 | Wang Z K, Liu Q H, Yang Z M. Nano magnetite-loaded biochar boosted methanogenesis through shifting microbial community composition and modulating electron transfer[J]. Science of the Total Environment, 2023, 861: 160597. |
62 | 武讨龙, 张胜江, 刘津洋, 等. 双金属有机框架材料的研究进展[J]. 无机盐工业, 2023, 55(6): 8-17. |
Wu T L, Zhang S J, Liu J Y, et al. Research progress of bimetallic-organic frameworks materials[J]. Inorganic Chemicals Industry, 2023, 55(6): 8-17. | |
63 | 尚海涛, 李智灵, 杨琦, 等. 负载型纳米Pd/Fe对挥发性氯代烃的去除[J]. 现代地质, 2008, 22(2): 313-320. |
Shang H T, Li Z L, Yang Q, et al. Removal of volatile chlorinated hydrocarbons in water by supported nanoscale Pd/Fe particles[J]. Geoscience, 2008, 22(2): 313-320. | |
64 | Lin X Q, Li Z L, Zhu Y Y, et al. Palladium/iron nanoparticles stimulate tetrabromobisphenol a microbial reductive debromination and further mineralization in sediment[J]. Environment International, 2020, 135: 105353. |
65 | Su J, Chen H, Wang J, et al. Enhanced dechlorination of carbon tetrachloride by Ni-doped zero-valent iron nanoparticles @ magnetic Fe3O4 (Ni4/Fe@Fe3O4) nanocomposites[J]. Colloids and Surfaces a: Physicochemical and Engineering Aspects, 2021, 623: 126691. |
66 | Ma Y Y, Wang Y Y, Lv X F, et al. Insight into the mode of action of Pd-doped zero-valent iron nanoparticles@graphene (Pd/FePs@G) toward carbon tetrachloride dechlorination reaction in aqueous solution[J]. Applied Catalysis A: General, 2018, 560: 84-93. |
67 | Gong L, Qi J L, Lv N, et al. Mechanistic role of nitrate anion in TCE dechlorination by ball milled ZVI and sulfidated ZVI: experimental investigation and theoretical analysis[J]. Journal of Hazardous Materials, 2021, 403: 123844. |
68 | Ri C, Li F X, Mun H, et al. Ball-milled Fe0/FeS2 enhanced interaction of Shewanella oneidensis MR-1 with anaerobic microbial community: impact on 2,4-dichloronitrobenzene reduction and methane yield[J]. Chemical Engineering Journal, 2023, 452: 139086. |
69 | Dai C B, Yang L B, Wang J, et al. Enhancing anaerobic digestion of pharmaceutical industries wastewater with the composite addition of zero valent iron (ZVI) and granular activated carbon (GAC)[J]. Bioresource Technology, 2022, 346: 126566. |
70 | Kang H, Lee S, Lim T, et al. Effect of microbial community structure in inoculum on the stimulation of direct interspecies electron transfer for methanogenesis[J]. Bioresource Technology, 2021, 332: 125100. |
71 | Park J H, Park J H, Seong H J, et al. Metagenomic insight into methanogenic reactors promoting direct interspecies electron transfer via granular activated carbon[J]. Bioresource Technology, 2018, 259: 414-422. |
72 | Vilela R, Saia F T, Gregoracci G B, et al. Hydrogen production in reactors: the influence of organic loading rate, inoculum and support material[J]. International Journal of Hydrogen Energy, 2019, 44(50): 27259-27271. |
73 | Zhuang H, Zhu H, Zhang J, et al. Enhanced 2,4,6-trichlorophenol anaerobic degradation by Fe3O4 supported on water hyacinth biochar for triggering direct interspecies electron transfer and its use in coal gasification wastewater treatment[J]. Bioresource Technology, 2020, 296: 122306. |
74 | Castilho T G, Rodrigues J A D, García J, et al. Recent advances and perspectives in the use of conductive materials to improve anaerobic wastewater treatment: a systematic review approached[J]. Journal of Water Process Engineering, 2022, 50: 103193. |
75 | 朱剑锋, 王艳琼, 王红武. 铁氧化物促进微生物直接种间电子传递的机理及其研究现状[J]. 环境化学, 2022, 41(6): 1856-1868. |
Zhu J F, Wang Y Q, Wang H W. A review on enhancement of direct interspecies electron transfer induced by iron oxides and its mechanism[J]. Environmental Chemistry, 2022, 41(6): 1856-1868. | |
76 | Lovley D R. Electrically conductive pili: biological function and potential applications in electronics[J]. Current Opinion in Electrochemistry, 2017, 4(1): 190-198. |
77 | 蒋海明, 王路路, 李侠. 微生物种间直接电子传递方式耦合产甲烷研究进展[J]. 高校化学工程学报, 2019, 33(6): 1303-1313. |
Jiang H M, Wang L L, Li X. Research progress on coupling methane production by direct electron transfer between microbial species[J]. Journal of Chemical Engineering of Chinese Universities, 2019, 33(6): 1303-1313. | |
78 | He S F, Feng L K, Zhao W X, et al. Composition and molecular structure analysis of hydrophilic/hydrophobic extracellular polymeric substances (EPS) with impacts on sludge dewaterability[J]. Chemical Engineering Journal, 2023, 462: 142234. |
79 | Xiao Y, Zhao F. Electrochemical roles of extracellular polymeric substances in biofilms[J]. Current Opinion in Electrochemistry, 2017, 4(1): 206-211. |
80 | Gao Y J, Cai T, Yin J, et al. Insights into biodegradation behaviors of methanolic wastewater in up-flow anaerobic sludge bed (UASB) reactor coupled with in-situ bioelectrocatalysis[J]. Bioresource Technology, 2023, 376: 128835. |
81 | Yan W W, Sun F Q, Liu J B, et al. Enhanced anaerobic phenol degradation by conductive materials via EPS and microbial community alteration[J]. Chemical Engineering Journal, 2018, 352: 1-9. |
[1] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[2] | 段重达, 姚小伟, 朱家华, 孙静, 胡南, 李广悦. 环境因素对克雷白氏杆菌诱导碳酸钙沉淀的影响[J]. 化工学报, 2023, 74(8): 3543-3553. |
[3] | 屈园浩, 邓文义, 谢晓丹, 苏亚欣. 活性炭/石墨辅助污泥电渗脱水研究[J]. 化工学报, 2023, 74(7): 3038-3050. |
[4] | 朱理想, 罗默也, 张晓东, 龙涛, 余冉. 醌指纹法指示三氯乙烯污染土功能微生物活性应用研究[J]. 化工学报, 2023, 74(6): 2647-2654. |
[5] | 张建华, 陈萌萌, 孙雅雯, 彭永臻. 部分短程硝化同步除磷耦合Anammox实现生活污水高效脱氮除磷[J]. 化工学报, 2023, 74(5): 2147-2156. |
[6] | 胡香凝, 尹渊博, 袁辰, 是赟, 刘翠伟, 胡其会, 杨文, 李玉星. 成品油在土壤中运移可视化的实验研究[J]. 化工学报, 2023, 74(4): 1827-1835. |
[7] | 王思琪, 顾天宇, 陈献富, 王通, 李佳, 柯威, 李小锋, 范益群. 陶瓷膜用于杜仲叶提取液澄清的分离特性与膜污染机制研究[J]. 化工学报, 2023, 74(3): 1113-1125. |
[8] | 祖凌鑫, 胡荣庭, 李鑫, 陈余道, 陈广林. 木质生物质化学组分的碳释放产物特征和反硝化利用程度[J]. 化工学报, 2023, 74(3): 1332-1342. |
[9] | 刘定平, 陈爱桦, 张向阳, 何文浩, 王海. 铝灰半干法水解脱氮研究[J]. 化工学报, 2023, 74(3): 1294-1302. |
[10] | 徐银, 蔡洁, 陈露, 彭宇, 刘夫珍, 张晖. 异相可见光催化耦合过硫酸盐活化技术在水污染控制中的研究进展[J]. 化工学报, 2023, 74(3): 995-1009. |
[11] | 黄玉龙, 吕凡, 仇俊杰, 章骅, 何品晶. 易腐垃圾厌氧消化沼液理化性质及VOCs分子特征[J]. 化工学报, 2023, 74(3): 1275-1285. |
[12] | 陈瑞哲, 程磊磊, 顾菁, 袁浩然, 陈勇. 纤维增强树脂复合材料化学回收技术研究进展[J]. 化工学报, 2023, 74(3): 981-994. |
[13] | 查坦捷, 杨涵, 秦荷杰, 关小红. 仿生材料的构建及其在水环境化学领域中的研究进展[J]. 化工学报, 2023, 74(2): 585-598. |
[14] | 陈晨, 杨倩, 陈云, 张睿, 刘冬. 不同氧浓度下煤挥发分燃烧的化学动力学研究[J]. 化工学报, 2022, 73(9): 4133-4146. |
[15] | 许贤伦, 钱旸, 张兴旺, 雷乐成. 高压脉冲介质阻挡放电降解土壤中芘的研究[J]. 化工学报, 2022, 73(9): 4025-4033. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 668
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 352
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||