化工学报 ›› 2021, Vol. 72 ›› Issue (1): 167-179.DOI: 10.11949/0438-1157.20200925
李建惠1,2(),兰天昊1,2,陈杨1,2,杨江峰1,2,李立博1,2,3(),李晋平1,2,3
收稿日期:
2020-07-10
修回日期:
2020-11-09
出版日期:
2021-01-05
发布日期:
2021-01-05
通讯作者:
李立博
作者简介:
李建惠(1997—),女,硕士研究生,基金资助:
LI Jianhui1,2(),LAN Tianhao1,2,CHEN Yang1,2,YANG Jiangfeng1,2,LI Libo1,2,3(),LI Jinping1,2,3
Received:
2020-07-10
Revised:
2020-11-09
Online:
2021-01-05
Published:
2021-01-05
Contact:
LI Libo
摘要:
作为一种新型多孔材料,金属有机骨架(metal-organic framework, MOF)材料因其具有高孔隙率、大比表面积、孔尺寸高度可调、结构多样等优点,近年来在气体吸附与分离领域显示出广阔的应用前景。然而,在MOF材料的工业化进程中,仍存在稳定性差等问题需要解决。将MOF材料与其他功能材料进行复合,实现不同材料间的协同效应,在保证吸附分离性能的同时,显著提升MOF材料的结构稳定性。本综述概述了MOF基复合材料的构筑策略,与MOFs构筑复合材料的材料,包括碳基材料、离子液体、MOFs、分子筛等。分析了各种MOF复合材料在气体吸附与分离领域的应用进展,并对该研究方向进行了展望。
中图分类号:
李建惠, 兰天昊, 陈杨, 杨江峰, 李立博, 李晋平. MOF复合材料在气体吸附分离中的研究进展[J]. 化工学报, 2021, 72(1): 167-179.
LI Jianhui, LAN Tianhao, CHEN Yang, YANG Jiangfeng, LI Libo, LI Jinping. Research progress of MOF-based composites for gas adsorption and separation[J]. CIESC Journal, 2021, 72(1): 167-179.
1 | 陈小明, 张杰鹏, 李建荣, 等. 金属-有机框架材料[M]. 北京: 化学工业出版社, 2017. |
Chen X M, Zhang J P, Li J R, et al. Metal-organic Frameworks[M]. Bejing: Chemical Industry Press, 2017. | |
2 | Furukawa H, Ko N, Go Y B, et al. Ultrahigh porosity in metal-organic frameworks[J]. Science, 2010, 329(5990): 424-428. |
3 | Farha O K, Eryazici I, Jeong N C, et al. Metal-organic framework materials with ultrahigh surface areas: is the sky the limit?[J]. Journal of the American Chemical Society, 2012, 134(36): 15016-15021. |
4 | Li J R, Kuppler R J, Zhou H C. Selective gas adsorption and separation in metal-organic frameworks[J]. Chemical Society Reviews, 2009, 38(5): 1477-1504. |
5 | Li H, Li L, Lin R B, et al. Porous metal-organic frameworks for gas storage and separation: status and challenges[J]. EnergyChem, 2019, 1(1): 100006. |
6 | Jiang Y, Tan P, Qi S C, et al. Metal-organic frameworks with target-specific active sites switched by photoresponsive motifs: efficient adsorbents for tailorable CO2 capture[J]. Angewandte Chemie International Edition, 2019, 58(20): 6600-6604. |
7 | Liao P Q, Huang N Y, Zhang W X, et al. Controlling guest conformation for efficient purification of butadiene[J]. Science, 2017, 356(6343): 1193-1196. |
8 | 刘普旭, 贺朝辉, 李立博, 等. 高稳定双金属MOF材料用于低浓度乙烷的高效分离[J]. 化工学报, 2020, 71(9): 4211-4218. |
Liu P X, He C H, Li L B, et al. Stable mixed metal-organic framework for efficient C2H6/C2H4 separation[J]. CIESC Journal, 2020, 71(9): 4211-4218. | |
9 | Li B, Wen H M, Zhou W, et al. Porous metal-organic frameworks: promising materials for methane storage[J]. Chem, 2016, 1(4): 557-580. |
10 | Bao Z, Chang G, Xing H, et al. Potential of microporous metal-organic frameworks for separation of hydrocarbon mixtures[J]. Energy & Environmental Science, 2016, 9(12): 3612-3641. |
11 | 崔希利, 邢华斌. 金属有机框架材料分离低碳烃的研究进展[J]. 化工学报, 2018, 69(6): 2339-2352. |
Cui X L, Xing H B. Separation of light hydrocarbons with metal-organic frameworks[J]. CIESC Journal, 2018, 69(6): 2339-2352. | |
12 | Li L, Lin R B, Krishna R, et al. Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites[J]. Science, 2018, 362(6413): 443-446. |
13 | Chen K J, Madden D G, Mukherjee S, et al. Synergistic sorbent separation for one-step ethylene purification from a four-component mixture[J]. Science, 2019, 366(6462): 241-246. |
14 | Zhou Z, Mei L, Ma C, et al. A novel bimetallic MIL-101(Cr, Mg) with high CO2 adsorption capacity and CO2/N2 selectivity[J]. Chemical Engineering Science, 2016, 147: 109-117. |
15 | Cui X, Chen K, Xing H, et al. Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene[J]. Science, 2016, 353(6295): 141-144. |
16 | Lin R B, Li L, Zhou H L, et al. Molecular sieving of ethylene from ethane using a rigid metal-organic framework[J]. Nature Materials, 2018, 17(12): 1128-1133. |
17 | 刘秀英, 于景新, 李晓东. 金属有机骨架中的水稳定性和吸附性能研究[J]. 化工新型材料, 2017, 45(8): 219-221. |
Liu X Y, Yu J X, Li X D. Study of water stability and adsorption on metal-organic framework[J]. New Chemical Materials, 2017, 45(8): 219-221. | |
18 | Schoenecker P M, Carson C G, Jasuja H, et al. Effect of water adsorption on retention of structure and surface area of metal-organic frameworks[J]. Industrial & Engineering Chemistry Research, 2012, 51(18): 6513-6519. |
19 | Rubio-Martinez M, Avci-Camur C, Thornton A W, et al. New synthetic routes towards MOF production at scale[J]. Chemical Society Reviews, 2017, 46(11): 3453-3480. |
20 | Lan T, Li L, Chen Y, et al. Opportunities and critical factors of porous metal-organic frameworks for the industrial separation of light olefins[J]. Materials Chemistry Frontiers, 2020, 4:1954-1984. |
21 | Liu X W, Sun T J, Hu J L, et al. Composites of metal-organic frameworks and carbon-based materials: preparations, functionalities and applications[J]. Journal of Materials Chemistry A, 2016, 4(10): 3584-3616. |
22 | 马士珍, 苏宝根, 鲍宗必, 等. 干气中烷烃, 烯烃新型分离吸附剂的研究进展[J]. 化工学报, 2014, 65(2): 396-405. |
Ma S Z, Su B G, Bao Z B, et al. Advances in new type adsorbent for separating alkene from dry gas[J]. CIESC Journal, 2014, 65(2): 396-405. | |
23 | Wan Y, Wang J, Huang F, et al. Synergistic effect of adsorption coupled with catalysis based on graphene-supported MOF hybrid aerogel for promoted removal of dyes[J]. RSC Advances, 2018, 8(60): 34552-34559. |
24 | Zhu Q L, Xu Q. Metal-organic framework composites[J]. Chemical Society Reviews, 2014, 43(16): 5468-5512. |
25 | Somayajulu Rallapalli P B, Raj M C, Patil D V, et al. Activated carbon@MIL‐101(Cr): a potential metal‐organic framework composite material for hydrogen storage[J]. International Journal of Energy Research, 2013, 37(7): 746-753. |
26 | Barbatti M, Jalbert G, Nascimento M A C. Clustering of hydrogen molecules around a molecular cation: the Li3+ (H2)n clusters (n= 1—6)[J]. The Journal of Physical Chemistry A, 2002, 106(3): 551-555. |
27 | Lochan R C, Head-Gordon M. Computational studies of molecular hydrogen binding affinities: the role of dispersion forces, electrostatics, and orbital interactions[J]. Physical Chemistry Chemical Physics, 2006, 8(12): 1357-1370. |
28 | Prabhakaran P K, Deschamps J. Doping activated carbon incorporated composite MIL-101 using lithium: impact on hydrogen uptake[J]. Journal of Materials Chemistry A, 2015, 3(13): 7014-7021. |
29 | Kayal S, Chakraborty A. Activated carbon (type Maxsorb-III) and MIL-101(Cr) metal organic framework based composite adsorbent for higher CH4 storage and CO2 capture[J]. Chemical Engineering Journal, 2018, 334: 780-788. |
30 | Yang S J, Choi J Y, Chae H K, et al. Preparation and enhanced hydrostability and hydrogen storage capacity of CNT@MOF-5 hybrid composite[J]. Chemistry of Materials, 2009, 21(9): 1893-1897. |
31 | Anbia M, Hoseini V. Development of MWCNT@MIL-101 hybrid composite with enhanced adsorption capacity for carbon dioxide[J]. Chemical Engineering Journal, 2012, 191: 326-330. |
32 | Anbia M, Sheykhi S. Preparation of multi-walled carbon nanotube incorporated MIL-53-Cu composite metal-organic framework with enhanced methane sorption[J]. Journal of Industrial and Engineering Chemistry, 2013, 19(5): 1583-1586. |
33 | Yang Y, Ge L, Rudolph V, et al. In situ synthesis of zeolitic imidazolate frameworks/carbon nanotube composites with enhanced CO2 adsorption[J]. Dalton Transactions, 2014, 43(19): 7028-7036. |
34 | Babaei M, Anbia M, Kazemipour M. Synthesis of zeolite/carbon nanotube composite for gas separation[J]. Canadian Journal of Chemistry, 2017, 95(2): 162-168. |
35 | Xiang Z, Hu Z, Cao D, et al. Metal-organic frameworks with incorporated carbon nanotubes: improving carbon dioxide and methane storage capacities by lithium doping[J]. Angewandte Chemie International Edition, 2011, 50(2): 491-494. |
36 | Xiang Z, Peng X, Cheng X, et al. CNT@Cu3(BTC)2 and metal-organic frameworks for separation of CO2/CH4 mixture[J]. The Journal of Physical Chemistry C, 2011, 115(40): 19864-19871. |
37 | Prasanth K P, Rallapalli P, Raj M C, et al. Enhanced hydrogen sorption in single walled carbon nanotube incorporated MIL-101 composite metal-organic framework[J]. International Journal of Hydrogen Energy, 2011, 36(13): 7594-7601. |
38 | Cortés-Súarez J, Celis-Arias V, Beltrán H I, et al. Synthesis and characterization of an SWCNT@HKUST-1 composite: enhancing the CO2 adsorption properties of HKUST-1[J]. ACS Omega, 2019, 4(3): 5275-5282. |
39 | Zheng Y, Zheng S, Xue H, et al. Metal‐organic frameworks/graphene‐based materials: preparations and applications[J]. Advanced Functional Materials, 2018, 28(47): 1804950. |
40 | Muschi M, Serre C. Progress and challenges of graphene oxide/metal-organic composites[J]. Coordination Chemistry Reviews, 2019, 387: 262-272. |
41 | Petit C, Burress J, Bandosz T J. The synthesis and characterization of copper-based metal-organic framework/graphite oxide composites[J]. Carbon, 2011, 49(2): 563-572. |
42 | Petit C, Bandosz T J. Synthesis, characterization, and ammonia adsorption properties of mesoporous metal-organic framework (MIL (Fe))-graphite oxide composites: exploring the limits of materials fabrication[J]. Advanced Functional Materials, 2011, 21(11): 2108-2117. |
43 | Bian Z, Xu J, Zhang S, et al. Interfacial growth of metal organic framework/graphite oxide composites through Pickering emulsion and their CO2 capture performance in the presence of humidity[J]. Langmuir, 2015, 31(26): 7410-7417. |
44 | Cao Y, Zhao Y, Lv Z, et al. Preparation and enhanced CO2 adsorption capacity of UiO-66/graphene oxide composites[J]. Journal of Industrial and Engineering Chemistry, 2015, 27: 102-107. |
45 | Ying Y, Liu D, Zhang W, et al. High-flux graphene oxide membranes intercalated by metal-organic framework with highly selective separation of aqueous organic solution[J]. ACS Applied Materials & Interfaces, 2017, 9(2): 1710-1718. |
46 | Yoo J T, Lee S H, Lee C K, et al. Homogeneous decoration of zeolitic imidazolate framework-8 (ZIF-8) with core-shell structures on carbon nanotubes[J]. RSC Advances, 2014, 4(91): 49614-49619. |
47 | Bian Z, Zhu X, Jin T, et al. Ionic liquid-assisted growth of Cu3(BTC)2 nanocrystals on graphene oxide sheets: towards both high capacity and high rate for CO2 adsorption[J]. Microporous and Mesoporous Materials, 2014, 200: 159-164. |
48 | Zhao Y, Seredych M, Zhong Q, et al. Superior performance of copper based MOF and aminated graphite oxide composites as CO2 adsorbents at room temperature[J]. ACS Applied Materials & Interfaces, 2013, 5(11): 4951-4959. |
49 | Kumar R, Raut D, Ramamurty U, et al. Remarkable improvement in the mechanical properties and CO2 uptake of MOFs brought about by covalent linking to graphene[J]. Angewandte Chemie International Edition, 2016, 55(27): 7857-7861. |
50 | Petit C, Bandosz T J. MOF-graphite oxide composites: combining the uniqueness of graphene layers and metal-organic frameworks[J]. Advanced Materials, 2009, 21(46): 4753-4757. |
51 | Petit C, Bandosz T J. Enhanced adsorption of ammonia on metal‐organic framework/graphite oxide composites: analysis of surface interactions[J]. Advanced Functional Materials, 2010, 20(1): 111-118. |
52 | Huang W, Zhou X, Xia Q, et al. Preparation and adsorption performance of GrO@Cu-BTC for separation of CO2/CH4[J]. Industrial & Engineering Chemistry Research, 2014, 53(27): 11176-11184. |
53 | Li Y, Miao J, Sun X, et al. Mechanochemical synthesis of Cu-BTC@GO with enhanced water stability and toluene adsorption capacity[J]. Chemical Engineering Journal, 2016, 298: 191-197. |
54 | Zhao J, Nunn W T, Lemaire P C, et al. Facile conversion of hydroxy double salts to metal-organic frameworks using metal oxide particles and atomic layer deposition thin-film templates[J]. Journal of the American Chemical Society, 2015, 137(43): 13756-13759. |
55 | Xu F, Yu Y, Yan J, et al. Ultrafast room temperature synthesis of GrO@HKUST-1 composites with high CO2 adsorption capacity and CO2/N2 adsorption selectivity[J]. Chemical Engineering Journal, 2016, 303: 231-237. |
56 | Kinik F P, Uzun A, Keskin S. Ionic liquid/metal-organic framework composites: from synthesis to applications[J]. ChemSusChem, 2017, 10(14): 2842-2863. |
57 | Morris R E. Ionothermal synthesis-ionic liquids as functional solvents in the preparation of crystalline materials[J]. Chemical Communications, 2009, (21): 2990-2998. |
58 | Ban Y, Li Z, Li Y, et al. Confinement of ionic liquids in nanocages: tailoring the molecular sieving properties of ZIF‐8 for membrane‐based CO2 capture[J]. Angewandte Chemie International Edition, 2015, 54(51): 15483-15487. |
59 | Khan N A, Hasan Z, Jhung S H. Ionic liquids supported on metal‐organic frameworks: remarkable adsorbents for adsorptive desulfurization[J]. Chemistry-A European Journal, 2014, 20(2): 376-380. |
60 | Ma J, Ying Y, Guo X, et al. Fabrication of mixed-matrix membrane containing metal-organic framework composite with task-specific ionic liquid for efficient CO2 separation[J]. Journal of Materials Chemistry A, 2016, 4(19): 7281-7288. |
61 | Sezginel K B, Keskin S, Uzun A. Tuning the gas separation performance of CuBTC by ionic liquid incorporation[J]. Langmuir, 2016, 32(4): 1139-1147. |
62 | Kinik F P, Altintas C, Balci V, et al. [BMIM][PF6] incorporation doubles CO2 selectivity of ZIF-8: elucidation of interactions and their consequences on performance[J]. ACS Applied Materials & Interfaces, 2016, 8(45): 30992-31005. |
63 | Koyuturk B, Altintas C, Kinik F P, et al. Improving gas separation performance of ZIF-8 by [BMIM][BF4] incorporation: interactions and their consequences on performance[J]. The Journal of Physical Chemistry C, 2017, 121(19): 10370-10381. |
64 | Wang J, Xie D, Zhang Z, et al. Efficient adsorption separation of acetylene and ethylene via supported ionic liquid on metal‐organic framework[J]. AIChE Journal, 2017, 63(6): 2165-2175. |
65 | Zeeshan M, Nozari V, Yagci M B, et al. Core-shell type ionic liquid/metal organic framework composite: an exceptionally high CO2/CH4 selectivity[J]. Journal of the American Chemical Society, 2018, 140(32): 10113-10116. |
66 | Furukawa S, Hirai K, Nakagawa K, et al. Heterogeneously hybridized porous coordination polymer crystals: fabrication of heterometallic core-shell single crystals with an in‐plane rotational epitaxial relationship[J]. Angewandte Chemie International Edition, 2009, 48(10): 1766-1770. |
67 | Li T, Sullivan J E, Rosi N L. Design and preparation of a core-shell metal-organic framework for selective CO2 capture[J]. Journal of the American Chemical Society, 2013, 135(27): 9984-9987. |
68 | Panchariya D K, Rai R K, Anil Kumar E, et al. Core-shell zeolitic imidazolate frameworks for enhanced hydrogen storage[J]. ACS Omega, 2018, 3(1): 167-175. |
69 | Koh K, Wong-Foy A G, Matzger A J. MOF@MOF: microporous core-shell architectures[J]. Chemical Communications, 2009, (41): 6162-6164. |
70 | Gu Y, Wu Y, Li L, et al. Controllable modular growth of hierarchical MOF-on-MOF architectures[J]. Angewandte Chemie, 2017, 129(49): 15864-15868. |
71 | Sindoro M, Steve G. Voids and yolk-shells from crystals that coat particles[J]. Journal of the American Chemical Society, 2014, 136(39): 13471-13473. |
72 | Liu C, Qiang S, Lin L, et al. Ternary MOF-on-MOF heterostructures with controllable architectural and compositional complexity via multiple selective assembly[J]. Nature Communications, 2020, 11(1): 1-8. |
73 | Chu L Y, Utada A S, Shah R K, et al. Controllable monodisperse multiple emulsions[J]. Angewandte Chemie, 2007, 119(47): 9128-9132. |
74 | Xu J H, Li S W, Tan J, et al. Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping[J]. Microfluidics and Nanofluidics, 2008, 5(6): 711-717. |
75 | Faustini M, Kim J, Jeong G Y, et al. Microfluidic approach toward continuous and ultrafast synthesis of metal-organic framework crystals and hetero structures in confined microdroplets[J]. Journal of the American Chemical Society, 2013, 135(39): 14619-14626. |
76 | Zhu G, Graver R, Emdadi L, et al. Synthesis of zeolite@metal-organic framework core-shell particles as bifunctional catalysts[J]. RSC Advances, 2014, 4(58): 30673-30676. |
77 | Al-Naddaf Q, Thakkar H, Rezaei F. Novel zeolite-5A@MOF-74 composite adsorbents with core-shell structure for H2 purification[J]. ACS Applied Materials & Interfaces, 2018, 10(35): 29656-29666. |
78 | Al-Naddaf Q, Rownaghi A A, Rezaei F. Multicomponent adsorptive separation of CO2, CO, CH4, N2, and H2 over core-shell zeolite-5A@MOF-74 composite adsorbents[J]. Chemical Engineering Journal, 2020, 384: 123251. |
[1] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[2] | 张澳, 罗英武. 低模量、高弹性、高剥离强度丙烯酸酯压敏胶[J]. 化工学报, 2023, 74(7): 3079-3092. |
[3] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[4] | 蔡斌, 张效林, 罗倩, 党江涛, 左栗源, 刘欣梅. 导电薄膜材料的研究进展[J]. 化工学报, 2023, 74(6): 2308-2321. |
[5] | 龙臻, 王谨航, 任俊杰, 何勇, 周雪冰, 梁德青. 离子液体协同PVCap抑制天然气水合物生成实验研究[J]. 化工学报, 2023, 74(6): 2639-2646. |
[6] | 崔张宁, 胡紫璇, 吴雷, 周军, 叶干, 刘田田, 张秋利, 宋永辉. 可降解纤维素基材料的耐水性能研究进展[J]. 化工学报, 2023, 74(6): 2296-2307. |
[7] | 李振, 张博, 王丽伟. PEG-EG固-固相变材料的制备和性能研究[J]. 化工学报, 2023, 74(6): 2680-2688. |
[8] | 陈韶云, 徐东, 陈龙, 张禹, 张远方, 尤庆亮, 胡成龙, 陈建. 单层聚苯胺微球阵列结构的制备及其吸附性能[J]. 化工学报, 2023, 74(5): 2228-2238. |
[9] | 代佳琳, 毕唯东, 雍玉梅, 陈文强, 莫晗旸, 孙兵, 杨超. 热物性对混合型CPCMs固液相变特性影响模拟研究[J]. 化工学报, 2023, 74(5): 1914-1927. |
[10] | 刘瑞琪, 周栖桐, 张悦, 贺莹, 高静, 马丽. 基于金纳米颗粒修饰二氧化硅纳米花的生物传感器构建及应用[J]. 化工学报, 2023, 74(3): 1247-1259. |
[11] | 徐东, 田杜, 陈龙, 张禹, 尤庆亮, 胡成龙, 陈韶云, 陈建. 聚苯胺/二氧化锰/聚吡咯复合纳米球的制备及其电化学储能性[J]. 化工学报, 2023, 74(3): 1379-1389. |
[12] | 陈瑞哲, 程磊磊, 顾菁, 袁浩然, 陈勇. 纤维增强树脂复合材料化学回收技术研究进展[J]. 化工学报, 2023, 74(3): 981-994. |
[13] | 郎雪梅, 姚柳眉, 樊栓狮, 李刚, 王燕鸿. 多孔材料中甲烷水合物生成的传热数值模拟研究[J]. 化工学报, 2022, 73(9): 3851-3860. |
[14] | 杨双桥, 韦宝杰, 徐大伟, 李莉, 王琪. 铝塑复合包装的应用及废弃物回收利用新技术[J]. 化工学报, 2022, 73(8): 3326-3337. |
[15] | 钟磊, 邱学青, 张文礼. 木质素衍生炭在碱金属离子电池负极中的研究进展[J]. 化工学报, 2022, 73(8): 3369-3380. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||