化工学报 ›› 2021, Vol. 72 ›› Issue (1): 180-191.DOI: 10.11949/0438-1157.20200976
王雨桐1,2(),潘伦1,2,张香文1,2,邹吉军1,2(
)
收稿日期:
2020-07-20
修回日期:
2020-08-20
出版日期:
2021-01-05
发布日期:
2021-01-05
通讯作者:
邹吉军
作者简介:
王雨桐(1994—),女,博士研究生,基金资助:
WANG Yutong1,2(),PAN Lun1,2,ZHANG Xiangwen1,2,ZOU Jijun1,2(
)
Received:
2020-07-20
Revised:
2020-08-20
Online:
2021-01-05
Published:
2021-01-05
Contact:
ZOU Jijun
摘要:
氢能是替代传统化石能源的重要清洁能源,然而实现氢能的高质量密度储存与温和条件下快速释放仍是一大瓶颈。氨硼烷储氢密度高达19.6%(质量),在室温下水解即可制得氢气,是最有发展前景的储氢材料之一。然而氨硼烷在水中放氢速度缓慢,因此开发加速其水解过程的催化剂至关重要。对氨硼烷的水解催化剂的研究主要集中在金属单质、金属化合物与光催化剂三类材料。本文从实践方面,介绍了氨硼烷水解制氢的研究方法,从理论方面,通过介绍催化剂的发展,综述了氨硼烷水解反应的步骤与机理。通过对产氢过程的深入描述,介绍了对氨硼烷水解制氢反应正面调控的方法,并依据已有的研究提出了未来该类催化剂的设计策略。
中图分类号:
王雨桐, 潘伦, 张香文, 邹吉军. 氨硼烷水解制氢研究进展[J]. 化工学报, 2021, 72(1): 180-191.
WANG Yutong, PAN Lun, ZHANG Xiangwen, ZOU Jijun. Research progress of ammonia borane hydrolytic hydrogen production[J]. CIESC Journal, 2021, 72(1): 180-191.
1 | Rahman M W. A review on on–board challenges of magnesium–based hydrogen storage materials for automobile applications[C]//AIP Conference Proceedings, 2017, 1851(1): 020093. |
2 | Feng X, Zhao Y H, Liu D K, et al. Towards high activity of hydrogen production from ammonia borane over efficient non-noble Ni5P4 catalyst[J]. International Journal of Hydrogen Energy, 2018, 43(36): 17112-17120. |
3 | U.S. Department of Energy. Hydrogen storage [EB/OL]. [2020-07-18]. . |
4 | Mohtadi R, Orimo S. The renaissance of hydrides as energy materials[J]. Nature Reviews Materials, 2017, 2(3): 16091. |
5 | Yadav M, Xu Q. Liquid-phase chemical hydrogen storage materials[J]. Energy & Environmental Science, 2012, 5(12): 9698-9725. |
6 | Shore S G, Parry R W. The crystalline compound ammonia-borane, NH3BH3[J]. Journal of the American Chemical Society, 1955, 77(22): 6084-6085. |
7 | Stephens F H, Pons V, Baker R T. Ammonia-borane: the hydrogen source par excellence?[J]. Dalton Transactions, 2007, 25(1): 2613-2626. |
8 | Peng B, Chen J. Ammonia borane as an efficient and lightweight hydrogen storage medium[J]. Energy & Environmental Science, 2008, 1(4): 479-483. |
9 | Heldebrant D J, Karkamkar A, Linehan J C, et al. Synthesis of ammonia borane for hydrogen storage applications[J]. Energy & Environmental Science, 2008, 1(1): 156-160. |
10 | Keskin E, Coşkuner Filiz B, Kılıç Depren S, et al. Recommendations for ammonia borane composite pellets as a hydrogen storage medium[J]. International Journal of Hydrogen Energy, 2018, 43(45): 20354-20371. |
11 | Patel N, Miotello A. Progress in Co-B related catalyst for hydrogen production by hydrolysis of boron-hydrides: a review and the perspectives to substitute noble metals[J]. International Journal of Hydrogen Energy, 2015, 40(3): 1429-1464. |
12 | Peng C Y, Kang L, Cao S, et al. Nanostructured Ni2P as a robust catalyst for the hydrolytic dehydrogenation of ammonia-borane[J]. Angewandte Chemie International Edition, 2015, 54(52): 15725-15729. |
13 | Lin F, Shao B, Li Z, et al. Visible light photocatalysis over solid acid: enhanced by gold plasmonic effect[J]. Applied Catalysis B-Environmental, 2017, 218(1): 480-487. |
14 | Benedetto S D, Carewska M, Cento C, et al. Effect of milling and doping on decomposition of NH3BH3 complex[J]. Thermochimica Acta, 2006, 441(2): 184-190. |
15 | Chiriac R, Toche F, Demirci U B, et al. Instability of the CuCl2–NH3BH3 mixture followed by TGA and DSC[J]. Thermochimica Acta, 2013, 567(1): 100-106. |
16 | Denney M C, Pons V, Hebden T J, et al. Efficient catalysis of ammonia borane dehydrogenation[J]. Journal of the American Chemical Society, 2006, 128(37): 12048-12049. |
17 | Kostka J F, Schellenberg R, Baitalow F, et al. Concentration-dependent dehydrogenation of ammonia-borane/triglyme mixtures[J]. European Journal of Inorganic Chemistry, 2012, 2012(1): 49-54. |
18 | Peng C Y, Hou C C, Chen Q Q, et al. Cu(OH)2 supported on Fe(OH)3 as a synergistic and highly efficient system for the dehydrogenation of ammonia-borane[J]. Science Bulletin, 2018, (63): 1583-1590. |
19 | Keaton R J, Blacquiere J M, Baker R T. Base metal catalyzed dehydrogenation of ammonia-borane for chemical hydrogen storage[J]. Journal of the American Chemical Society, 2007, 129(7): 1844-1845. |
20 | Cheng H F, Qian X F, Kuwahara Y, et al. A plasmonic molybdenum oxide hybrid with reversible tunability for visible-light-enhanced catalytic reactions[J]. Advanced Materials, 2015, 27(31): 4616-4621. |
21 | Rakap M, Ozkar S. Zeolite confined palladium(0) nanoclusters as effective and reusable catalyst for hydrogen generation from the hydrolysis of ammonia-borane[J]. International Journal of Hydrogen Energy, 2010, 35(3): 1305-1312. |
22 | Yang X J, Cheng F Y, Liang J, et al. PtxNi1-x nanoparticles as catalysts for hydrogen generation from hydrolysis of ammonia borane[J]. International Journal of Hydrogen Energy, 2009, 34(21): 8785-8791. |
23 | Rachiero G P, Demirci U B, Miele P. Bimetallic RuCo and RuCu catalysts supported on gamma-Al2O3. A comparative study of their activity in hydrolysis of ammonia-borane[J]. International Journal of Hydrogen Energy, 2011, 36(12): 7051-7065. |
24 | Yang X J, Cheng F Y, Liang J, et al. Carbon-supported Ni1-x@Ptx (x=0.32, 0.43, 0.60, 0.67, and 0.80) core-shell nanoparticles as catalysts for hydrogen generation from hydrolysis of ammonia borane[J]. International Journal of Hydrogen Energy, 2011, 36(3): 1984-1990. |
25 | Chandra M, Xu Q. A high-performance hydrogen generation system: transition metal-catalyzed dissociation and hydrolysis of ammonia–borane[J]. Journal of Power Sources, 2006, 156(2): 190-194. |
26 | Chandra M, Xu Q. Room temperature hydrogen generation from aqueous ammonia-borane using noble metal nano-clusters as highly active catalysts[J]. Journal of Power Sources, 2007, 168(1): 135-142. |
27 | Yao C F, Zhuang L, Cao Y L, et al. Hydrogen release from hydrolysis of borazane on Pt- and Ni-based alloy catalysts[J]. International Journal of Hydrogen Energy, 2008, 33(10): 2462-2467. |
28 | Fu F Y, Wang C L, Wang Q, et al. Highly selective and sharp volcano-type synergistic Ni2Pt@ZIF-8-catalyzed hydrogen evolution from ammonia borane hydrolysis[J]. Journal of the American Chemical Society, 2018, 140(31): 10034-10042. |
29 | Mori K, Miyawaki K, Yamashita H. Ru and Ru-Ni nanoparticles on TiO2 support as extremely active catalysts for hydrogen production from ammonia-borane[J]. ACS Catalysis, 2016, 6(5): 3128-3135. |
30 | Li J J, Guan Q Q, Wu H, et al. Highly active and stable metal single-atom catalysts achieved by strong electronic metal-support interactions[J]. Journal of the American Chemical Society, 2019, 141(37): 14515-14519. |
31 | Rakap M, Ozkar S. Hydrogen generation from the hydrolysis of ammonia-borane using intrazeolite cobalt(0) nanoclusters catalyst[J]. International Journal of Hydrogen Energy, 2010, 35(8): 3341-3346. |
32 | Metin O, Dinc M, Eren Z S, et al. Silica embedded cobalt(0) nanoclusters: efficient, stable and cost effective catalyst for hydrogen generation from the hydrolysis of ammonia borane[J]. International Journal of Hydrogen Energy, 2011, 36(18): 11528-11535. |
33 | Metin O, Ozkar S. Water soluble nickel(0) and cobalt(0) nanoclusters stabilized by poly(4-styrenesulfonic acid-co-maleic acid): highly active, durable and cost effective catalysts in hydrogen generation from the hydrolysis of ammonia borane[J]. International Journal of Hydrogen Energy, 2011, 36(2): 1424-1432. |
34 | Brooks R M, Maafa I M, Al-Enizi A M, et al. Electrospun bimetallic NiCr nanoparticles@carbon nanofibers as an efficient catalyst for hydrogen generation from ammonia borane[J]. Nanomaterials, 2019, 9(8): 1082-1095. |
35 | Zahmakiran M, Durap F, Ozkar S. Zeolite confined copper(0) nanoclusters as cost-effective and reusable catalyst in hydrogen generation from the hydrolysis of ammonia-borane[J]. International Journal of Hydrogen Energy, 2010, 35(1): 187-197. |
36 | Ozay O, Inger E, Aktas N, et al. Hydrogen production from ammonia borane via hydrogel template synthesized Cu, Ni, Co composites[J]. International Journal of Hydrogen Energy, 2011, 36(14): 8209-8216. |
37 | Yang X, Li Q, Li L, et al. CuCo binary metal nanoparticles supported on boron nitride nanofibers as highly efficient catalysts for hydrogen generation from hydrolysis of ammonia borane[J]. Journal of Power Sources, 2019, 431(1): 135-143. |
38 | Xu Q, Chandra M. Catalytic activities of non-noble metals for hydrogen generation from aqueous ammonia-borane at room temperature[J]. Journal of Power Sources, 2006, 163(1): 364-370. |
39 | Wang Y, Pan L, Chen Y, et al. Mo-doped Ni-based catalyst for remarkably enhancing catalytic hydrogen evolution of hydrogen-storage materials[J]. International Journal of Hydrogen Energy, 2020, 45(31): 15560-15570. |
40 | Wang C, Tuninetti J, Wang Z, et al. Hydrolysis of ammonia-borane over Ni/ZIF-8 nanocatalyst: high efficiency, mechanism, and controlled hydrogen release[J]. Journal of the American Chemical Society, 2017, 139(33): 11610-11615. |
41 | Cheng S, Liu Y, Zhao Y, et al. Superfine CoNi alloy embedded in Al2O3 nanosheets for efficient tandem catalytic reduction of nitroaromatic compounds by ammonia borane[J]. Dalton Trans., 2019, 48(47): 17499-17506. |
42 | Rablen P R. Large effect on borane bond dissociation energies resulting from coordination by Lewis bases[J]. Journal of the American Chemical Society, 1997, 119(35): 8350-8360. |
43 | Oh S, Song D, Kim H, et al. Cobalt-iron-phosphorus catalysts for efficient hydrogen generation from hydrolysis of ammonia borane solution[J]. Journal of Alloys and Compounds, 2019, 806(1): 643-649. |
44 | Zhou X, Meng X F, Wang J M, et al. Boron nitride supported NiCoP nanoparticles as noble metal-free catalyst for highly efficient hydrogen generation from ammonia borane[J]. International Journal of Hydrogen Energy, 2019, 44(10): 4764-4770. |
45 | Hou C C, Li Q, Wang C J, et al. Ternary Ni-Co-P nanoparticles as noble-metal-free catalysts to boost the hydrolytic dehydrogenation of ammonia-borane[J]. Energy & Environmental Science, 2017, 10(8): 1770-1776. |
46 | Grosvenor A P, Wik S D, Cavell R G, et al. Examination of the bonding in binary transition-metal monophosphides MP (M = Cr, Mn, Fe, Co) by X-ray photoelectron spectroscopy[J]. Inorganic Chemistry, 2005, 44(24): 8988-8998. |
47 | Guan S, An L, Ashraf S, et al. Oxygen vacancy excites Co3O4 nanocrystals embedded into carbon nitride for accelerated hydrogen generation[J]. Applied Catalysis B: Environmental, 2020, 269(15): 118775-118785. |
48 | Yamada Y, Yano K, Fukuzumi S. Catalytic application of shape-controlled Cu2O particles protected by Co3O4 nanoparticles for hydrogen evolution from ammonia borane[J]. Energy & Environmental Science, 2012, 5(1): 5356-5363. |
49 | Jia H, Liu S, Zheng G P, et al. Collagen-graphene oxide magnetic hybrids anchoring Pd(0) catalysts for efficient H2 generation from ammonia borane[J]. International Journal of Hydrogen Energy, 2019, 44(49): 27022-27029. |
50 | Tonbul Y, Akbayrak S, Ozkar S. Magnetically separable rhodium nanoparticles as catalysts for releasing hydrogen from the hydrolysis of ammonia borane[J]. Journal of Colloid and Interface Science, 2019, 553(1): 581-587. |
51 | Liu S, Li Y T, Zheng X C, et al. Pd nanoparticles anchoring to core-shell Fe3O4@SiO2-porous carbon catalysts for ammonia borane hydrolysis[J]. International Journal of Hydrogen Energy, 2020, 45(3): 1671-1680. |
52 | Zhang X, Zhao Y F, Jia X D, et al. Silica-protected ultrathin Ni3FeN nanocatalyst for the efficient hydrolytic dehydrogenation of NH3BH3[J]. Advanced Energy Materials, 2018, 8(12): 1702780-1702787. |
53 | Li Y, Zhang H, Xu T, et al. Under-water superaerophobic pine-shaped Pt nanoarray electrode for ultrahigh-performance hydrogen evolution[J]. Advanced Functional Materials, 2015, 25(11): 1737-1744. |
54 | Zhang H, Gu X J, Song J, et al. Non-noble metal nanoparticles supported by postmodified porous organic semiconductors: highly efficient catalysts for visible-light-driven on-demand H2 evolution from ammonia borane[J]. ACS Applied Materials & Interfaces, 2017, 9(38): 32767-32774. |
55 | Song J, Gu X J, Cheng J, et al. Remarkably boosting catalytic H2 evolution from ammonia borane through the visible-light-driven synergistic electron effect of non-plasmonic noble-metal-free nanoparticles and photoactive metal-organic frameworks[J]. Applied Catalysis B-Environmental, 2018, 225(1): 424-432. |
56 | Wang Y T, Shen G Q, Zhang Y X, et al. Visible-light-induced unbalanced charge on NiCoP/TiO2 sensitized system for rapid H2 generation from hydrolysis of ammonia borane[J]. Applied Catalysis B-Environmental, 2020, 260(1): 118183-118190. |
57 | Sun D D, Hao Y X, Wang C Y, et al. TiO2-CdS supported CuNi nanoparticles as a highly efficient catalyst for hydrolysis of ammonia borane under visible-light irradiation[J]. International Journal of Hydrogen Energy, 2020, 45(7): 4390-4402. |
58 | Awazu K, Fujimaki M, Rockstuhl C, et al. A plasmonic photocatalyst consisting of sliver nanoparticles embedded in titanium dioxide[J]. Journal of the American Chemical Society, 2008, 130(5): 1676-1680. |
59 | Link S, El-Sayed M A. Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals[J]. International Reviews in Physical Chemistry, 2000, 19(3): 409-453. |
60 | Hartland G V. Optical studies of dynamics in noble metal nanostructures[J]. Chemical Reviews, 2011, 111(6): 3858-3887. |
61 | Rej S, Hsia C F, Chen T Y, et al. Facet-dependent and light-assisted efficient hydrogen evolution from ammonia borane using gold-palladium core-shell nanocatalysts[J]. Angewandte Chemie International Edition, 2016, 55(25): 7222-7226. |
62 | Yin H B, Kuwahara Y, Mori K, et al. Localized surface plasmon resonances in plasmonic molybdenum tungsten oxide hybrid for visible-light-enhanced catalytic reaction[J]. Journal of Physical Chemistry C, 2017, 121(42): 23531-23540. |
63 | Yin H B, Kuwahara Y, Mori K, et al. High-surface-area plasmonic MoO3-x: rational synthesis and enhanced ammonia borane dehydrogenation activity[J]. Journal of Materials Chemistry A, 2017, 5(19): 8946-8953. |
64 | Liu P H, Wen M C, Tan C S, et al. Surface plasmon resonance enhancement of production of H2 from ammonia borane solution with tunable Cu2-xS nanowires decorated by Pd nanoparticles[J]. Nano Energy, 2017, 31(1): 57-63. |
65 | Zhang Z Y, Jiang X Y, Liu B K, et al. IR-driven ultrafast transfer of plasmonic hot electrons in nonmetallic branched heterostructures for enhanced H2 generation[J]. Advanced Materials, 2018, 30(9): 1705221-1705231. |
66 | Chen J Q, Hu M, Ming M, et al. Carbon-supported small Rh nanoparticles prepared with sodium citrate: toward high catalytic activity for hydrogen evolution from ammonia borane hydrolysis[J]. International Journal of Hydrogen Energy, 2018, 43(5): 2718-2725. |
67 | Wang Q, Fu F Y, Yang S, et al. Dramatic synergy in CoPt nanocatalysts stabilized by “Click” dendrimers for evolution of hydrogen from hydrolysis of ammonia borane[J]. ACS Catalysis, 2019, 9(2): 1110-1119. |
68 | Chen M H, Zhou L Q, Lu D, et al. RuCo bimetallic alloy nanoparticles immobilized on multi-porous MIL-53(Al) as a highly efficient catalyst for the hydrolytic reaction of ammonia borane[J]. International Journal of Hydrogen Energy, 2018, 43(3): 1439-1450. |
69 | Ge Y, Ye W, Shah Z H, et al. PtNi/NiO clusters coated by hollow sillica: novel design for highly efficient hydrogen production from ammonia-borane[J]. ACS Applied Materials & Interfaces, 2017, 9(4): 3749-3756. |
70 | Li Z, He T, Matsumura D, et al. Atomically dispersed Pt on the surface of Ni particles: synthesis and catalytic function in hydrogen generation from aqueous ammonia–borane[J]. ACS Catalysis, 2017, 7(10): 6762-6769. |
71 | Lu D S, Li J H, Lin C H, et al. A simple and scalable route to synthesize CoxCu1-xCo2O4@CoyCu1-yCo2O4 yolk-shell microspheres, a high-performance catalyst to hydrolyze ammonia borane for hydrogen production[J]. Small, 2019, 15(10): 1805460-1805469. |
72 | Gao M Y, Yu Y S, Yang W W, et al. Ni nanoparticles supported on graphitic carbon nitride as visible light catalysts for hydrolytic dehydrogenation of ammonia borane[J]. Nanoscale, 2019, 11(8): 3506-3513. |
73 | Yang X J, Wang C Y, Gao R Y, et al. Non-noble metallic nanoparticles supported on titania spheres as catalysts for hydrogen generation from hydrolysis of ammonia borane under ultraviolet light irradiation[J]. International Journal of Hydrogen Energy, 2018, 43(34): 16556-16565. |
74 | Verma P, Kuwahara Y, Mori K, et al. Pd/Ag and Pd/Au bimetallic nanocatalysts on mesoporous silica for plasmon-mediated enhanced catalytic activity under visible light irradiation[J]. Journal of Materials Chemistry A, 2016, 4(26): 10142-10150. |
75 | Jo S, Verma P, Kuwahara Y, et al. Enhanced hydrogen production from ammonia borane using controlled plasmonic performance of Au nanoparticles deposited on TiO2[J]. Journal of Materials Chemistry A, 2017, 5(41): 21883-21892. |
76 | Cheng H F, Kamegawa T, Mori K, et al. Surfactant-free nonaqueous synthesis of plasmonic molybdenum oxide nanosheets with enhanced catalytic activity for hydrogen generation from ammonia borane under visible light[J]. Angewandte Chemie-International Edition, 2014, 53(11): 2910-2914. |
[1] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[2] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[3] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[4] | 王阳, 戴永强, 曾炜. 2,5-二羟基苯磺酸增强离子水凝胶材料热电性能的研究[J]. 化工学报, 2023, 74(9): 3946-3955. |
[5] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[6] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[7] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[8] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[9] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[10] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[11] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[12] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[13] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
[14] | 周小文, 杜杰, 张战国, 许光文. 基于甲烷脉冲法的Fe2O3-Al2O3载氧体还原特性研究[J]. 化工学报, 2023, 74(6): 2611-2623. |
[15] | 王辰, 史秀锋, 武鲜凤, 魏方佳, 张昊虹, 车寅, 吴旭. 氧化还原法制备Mn3O4催化剂及其甲苯催化氧化性能与机理研究[J]. 化工学报, 2023, 74(6): 2447-2457. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 942
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1177
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||