1 |
Weng J Y, Huang Y P, Hao D L, et al. Recent advances of pharmaceutical crystallization theories[J]. Chinese Journal of Chemical Engineering, 2020, 28(4): 935-948.
|
2 |
韩布兴. 超临界流体科学与技术[M]. 北京: 中国石化出版社, 2005.
|
|
Han B X. Supercritical Fluid Science and Technology [M]. Beijing: China Petrochemical Press, 2005.
|
3 |
Bozbağ S E, Erkey C. Supercritical deposition: current status and perspectives for the preparation of supported metal nanostructures[J]. The Journal of Supercritical Fluids, 2015, 96: 298-312.
|
4 |
Vorobei A M, Parenago O O. Using supercritical fluid technologies to prepare micro- and nanoparticles[J]. Russian Journal of Physical Chemistry A, 2021, 95(3): 407-417.
|
5 |
Debenedetti P G. Homogeneous nucleation in supercritical fluids[J]. AIChE Journal, 1990, 36(9): 1289-1298.
|
6 |
Debenedetti P G, Tom J W, Kwauk X, et al. Rapid expansion of supercritical solutions (RESS): fundamentals and applications[J]. Fluid Phase Equilibria, 1993, 82: 311-321.
|
7 |
Türk M. Influence of thermodynamic behaviour and solute properties on homogeneous nucleation in supercritical solutions[J]. The Journal of Supercritical Fluids, 2000, 18(3): 169-184.
|
8 |
Türk M. Formation of small organic particles by RESS: experimental and theoretical investigations[J]. The Journal of Supercritical Fluids, 1999, 15(1): 79-89.
|
9 |
Helfgen B, Türk M, Schaber K. Theoretical and experimental investigations of the micronization of organic solids by rapid expansion of supercritical solutions[J]. Powder Technology, 2000, 110(1/2): 22-28.
|
10 |
Helfgen B, Türk M, Schaber K. Hydrodynamic and aerosol modelling of the rapid expansion of supercritical solutions (RESS-process)[J]. The Journal of Supercritical Fluids, 2003, 26(3): 225-242.
|
11 |
Hirunsit P, Huang Z, Srinophakun T, et al. Particle formation of ibuprofen-supercritical CO2 system from rapid expansion of supercritical solutions (RESS): a mathematical model[J]. Powder Technology, 2005, 154(2/3): 83-94.
|
12 |
Weber M, Thies M C. A simplified and generalized model for the rapid expansion of supercritical solutions[J]. The Journal of Supercritical Fluids, 2007, 40(3): 402-419.
|
13 |
Yamamoto S, Furusawa T. Thermophysical flow simulations of rapid expansion of supercritical solutions (RESS)[J]. The Journal of Supercritical Fluids, 2015, 97: 192-201.
|
14 |
Yin J Z, Xu Q Q, Wang A Q. Controlled growth of copper nanoparticles and nanorods in the channels of sba-15 by supercritical fluid deposition[J]. Chemical Engineering Communications, 2009, 197(4): 627-632.
|
15 |
Ni M, Xu Q Q, Yin J Z. Preparation of controlled release nanodrug ibuprofen supported on mesoporous silica using supercritical carbon dioxide[J]. Journal of Materials Research, 2012, 27(22): 2902-2910.
|
16 |
Xu Q Q, Wang Y Q, Wang A Q, et al. Systematical study of depositing nanoparticles and nanowires in mesoporous silica using supercritical carbon dioxide and co-solvents: morphology control, thermodynamics and kinetics of adsorption[J]. Nanotechnology, 2012, 23(28): 285602.
|
17 |
Xu Q Q, Zhang C J, Zhang X Z, et al. Controlled synthesis of Ag nanowires and nanoparticles in mesoporous silica using supercritical carbon dioxide and co-solvent[J]. The Journal of Supercritical Fluids, 2012, 62: 184-189.
|
18 |
Xu Q Q, Ma Y L, Gang X, et al. Comprehensive study of the role of ethylene glycol when preparing Ag@SBA-15 in supercritical CO2[J]. The Journal of Supercritical Fluids, 2014, 92: 100-106.
|
19 |
Xu Q Q, Xu G, Yin J Z, et al. Preparation of superhighly dispersed Co3O4@SBA-15 with different morphologies in supercritical CO2 with the assistance of dilute acids[J]. Industrial & Engineering Chemistry Research, 2014, 53(25): 10366-10371.
|
20 |
Xu Q Q, Ma Y L, Xu G, et al. Synthesis of highly dispersed silver nanoparticles or nano-network modified KIT-6 using supercritical carbon dioxide[J]. Journal of Materials Science, 2015, 50(2): 855-862.
|
21 |
Qiao G Y, Xu Q Q, Wang A Q, et al. Efficient synthesis of sub-5 nm Ag nanoparticles by the desorption effect of supercritical CO2 in SBA-15[J]. Nanotechnology, 2020, 31(37): 375603.
|
22 |
Qiao G Y, Xu Q Q, Wang A Q, et al. Size-controlled synthesis of CuO nanoparticles by the supercritical antisolvent method in SBA-15[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(1): 129-136.
|
23 |
Cardoso F A R, Vogel E M, Souza M F, et al. Mathematical modeling to predict the size and nucleation rate of micro and nanoparticles using the scale-up process with supercritical CO2[J]. The Journal of Supercritical Fluids, 2019, 154: 104608.
|
24 |
Becker R, Döring W. Kinetische behandlung der keimbildung in übersättigten dämpfen[J]. Annalen Der Physik, 1935, 416(8): 719-752.
|
25 |
Kwauk X, Debenedetti P G. Mathematical modeling of aerosol formation by rapid expansion of supercritical solutions in a converging nozzle[J]. Journal of Aerosol Science, 1993, 24(4): 445-469.
|
26 |
Tsung C K, Kuhn J N, Huang W, et al. Sub-10 nm platinum nanocrystals with size and shape control: catalytic study for ethylene and pyrrole hydrogenation[J]. Journal of the American Chemical Society, 2009, 131(16): 5816-5822.
|
27 |
Zhang W, Tian Y, He H L, et al. Recent advances in the synthesis of hierarchically mesoporous TiO2 materials for energy and environmental applications[J]. National Science Review, 2020, 7(11): 1702-1725.
|
28 |
Ding J, Liu H M, Fan H Y, et al. Effective “exfoliation” of Cu/ZrO2 by varying Cu content as high performance catalysts for dimethyl oxalate hydrogenation to ethylene glycol[J]. Catalysis Communications, 2019, 121: 62-67.
|
29 |
Threlfall T. Structural and thermodynamic explanations of Ostwald's rule[J]. Organic Process Research & Development, 2003, 7(6): 1017-1027.
|
30 |
Chakraborty D, Patey G N. How crystals nucleate and grow in aqueous NaCl solution[J]. The Journal of Physical Chemistry Letters, 2013, 4(4): 573-578.
|
31 |
Dashtian H, Wang H M, Sahimi M. Nucleation of salt crystals in clay minerals: molecular dynamics simulation[J]. The Journal of Physical Chemistry Letters, 2017, 8(14): 3166-3172.
|
32 |
van der Meer J, Bardez-Giboire I, Mercier C, et al. Mechanism of metal oxide nanoparticle loading in SBA-15 by the double solvent technique[J]. The Journal of Physical Chemistry C, 2010, 114(8): 3507-3515.
|
33 |
Tian L, Yang Q Y, Jiang Z, et al. Highly chemoselective hydrogenation of crotonaldehyde over Ag–In/SBA-15 fabricated by a modified “two solvents” strategy[J]. Chemical Communications, 2011, 47(21): 6168.
|
34 |
Xin Q, Glisenti A, Philippopoulos C, et al. Comparison between a water-based and a solvent-based impregnation method towards dispersed CuO/SBA-15 catalysts: texture, structure and catalytic performance in automotive exhaust gas abatement[J]. Catalysts, 2016, 6(10): 164.
|
35 |
Qiao G Y, Xu Q Q, Yin J Z, et al. Synthesis of CuO/SBA-15 nanocomposite in ternary system of CO2, inorganic salt and co-solvent[J]. The Journal of Supercritical Fluids, 2017, 128: 18-25.
|
36 |
Patel A, Rufford T E, Rudolph V, et al. Selective catalytic reduction of NO by CO over CuO supported on SBA-15: effect of CuO loading on the activity of catalysts[J]. Catalysis Today, 2011, 166(1): 188-193.
|
37 |
Pattadar D K, Zamborini F P. Size stability study of catalytically active sub-2 nm diameter gold nanoparticles synthesized with weak stabilizers[J]. Journal of the American Chemical Society, 2018, 140(43): 14126-14133.
|
38 |
Arenz M, Landman U, Heiz U. CO combustion on supported gold clusters[J]. ChemPhysChem, 2006, 7(9): 1871-1879.
|
39 |
Qiao G, Xu Q, Wang A, et al. Desorption-dominated synthesis of CuO/SBA-15 with tunable particle size and loading in supercritical CO2[J]. Nanotechnology, 2020, 31(9): 095602.
|
40 |
Lee S J, Kim S, Kim H S, et al. Dynamic simulation and optimization of population balance model for gas anti-solvent recrystallization process[J]. IFAC Proceedings Volumes, 2012, 45(15): 245-249.
|
41 |
Debenedetti P G, Kumar S K. Infinite dilution fugacity coefficients and the general behavior of dilute binary systems[J]. AIChE Journal, 1986, 32(8): 1253-1262.
|
42 |
董新艳. 溶质在超临界CO2及含改性剂的超临界CO2中扩散系数及其构效关系研究[D]. 杭州: 浙江大学, 2012.
|
|
Dong X Y. Diffusion coefficient in pure and modified supercritical CO2 and their structure-property relationship[D]. Hangzhou: Zhejiang University, 2012.
|
43 |
Fernandez-Martinez A, Hu Y D, Lee B, et al. In situ determination of interfacial energies between heterogeneously nucleated CaCO3 and quartz substrates: thermodynamics of CO2 mineral trapping[J]. Environmental Science & Technology, 2013, 47(1): 102-109.
|