化工学报 ›› 2020, Vol. 71 ›› Issue (9): 4270-4281.DOI: 10.11949/0438-1157.20200497
陈海涛1(),乔金硕1(),王振华1,孙旺1,李海军2,孙克宁1
收稿日期:
2020-05-06
修回日期:
2020-06-15
出版日期:
2020-09-05
发布日期:
2020-09-05
通讯作者:
乔金硕
作者简介:
陈海涛(1994—),男,硕士研究生,基金资助:
Haitao CHEN1(),Jinshuo QIAO1(),Zhenhuan WANG1,Wang SUN1,Haijun LI2,Kening SUN1
Received:
2020-05-06
Revised:
2020-06-15
Online:
2020-09-05
Published:
2020-09-05
Contact:
Jinshuo QIAO
摘要:
研究了原位Cu析出和CuCo双金属析出的钇掺杂钛酸锶(YST)材料在作为直接碳燃料电池(DC-SOFCs)阳极时的结构及性能。首先采用燃烧法制备系列Co掺杂的Y0.08Sr0.92Ti0.9-xCu0.1CoxO3-δ(x = 0,0.1,0.2,0.3)阳极材料。通过XRD、SEM、TEM等表征材料微观结构,结果表明Co掺杂量达到0.2时,氢气还原后的阳极材料析出均匀分布的CuCo双金属纳米颗粒。电导率测试表明CuCo双金属纳米颗粒有效提高了材料的电导率。CO氛围下的阻抗测试表明,析出CuCo双金属纳米颗粒的Co0.2阳极材料具有最小的极化阻抗,催化活性优于其他阳极材料,以其作为阳极的电池在800℃和碳为燃料时,最大功率密度可达591 mW·cm-2,且具有良好的稳定性,是一种优异的DC-SOFC阳极材料。
中图分类号:
陈海涛, 乔金硕, 王振华, 孙旺, 李海军, 孙克宁. 原位双金属纳米颗粒YST复合阳极的构筑及其直接碳催化性能研究[J]. 化工学报, 2020, 71(9): 4270-4281.
Haitao CHEN, Jinshuo QIAO, Zhenhuan WANG, Wang SUN, Haijun LI, Kening SUN. Investigation on preparation and carbon catalytic ability of in-situ bimetallic nanoparticle YST composite anode[J]. CIESC Journal, 2020, 71(9): 4270-4281.
图2 YST0.9-xCCox阳极材料在950℃的空气中煅烧5 h后的XRD谱图:(a)2θ从20°~80°,(b)2θ从32°~33°;YST0.9-xCCox阳极材料的Rietveld精修XRD谱图:(c)Co0,(d)Co0.1,(e)Co0.2,(f)Co0.3;YST0.9-xCCox阳极材料在10%H2和90%Ar气氛中于800℃煅烧5 h后的XRD谱图:(g)2θ从20°~80°,(h)2θ从41°~50°;(i)YST0.9-xCCox阳极材料与碳燃料以质量比1∶1均匀混合后于Ar气中800℃煅烧5 h后的XRD谱图
Fig.2 XRD patterns for YST0.9-xCCox sample after calcination at 950℃ in air for 5 h: (a) 2θ from 20°to 80°, (b) 2θ from 32° to 33°. Rietveld-refined XRD pattern of the YST0.9-xCCox samples: (c) Co0 sample, (d) Co0.1 sample, (e) Co0.2sample, (f) Co0.3 sample. XRD patterns of YST0.9-xCCox sample calcined at 800℃ for 5 h in 10% H2 and 90% Ar atmosphere: (g) 2θ from 20° to 80°, (h) 2θ from 41° to 50°. (i) XRD patterns for YST0.9-xCCox sample mixed with carbon fuel at a mass ratio of 1∶1 and calcined at 800℃ for 5 h in Ar gas
阳极材料 | 空间群 | 晶胞参数 |
---|---|---|
Co0 | Pm | a=b=c=3.8990?,α=β=γ=90°,5.129 g·cm-3 |
Co0.1 | Pm | a=b=c=3.8988 ?,α=β=γ=90°,5.142 g·cm-3 |
Co0.2 | Pm | a=b=c=3.8887 ?,α=β=γ=90°,5.182 g·cm-3 |
Co0.3 | Pm | a=b=c=3.8820 ?,α=β=γ=90°,5.209 g·cm-3 |
表1 YST0.9-xCCox阳极材料XRD数据精修后得到的晶体结构数据汇总
Table 1 Summary of rietveld refinement results of XRD data for YST0.9-xCCox samples
阳极材料 | 空间群 | 晶胞参数 |
---|---|---|
Co0 | Pm | a=b=c=3.8990?,α=β=γ=90°,5.129 g·cm-3 |
Co0.1 | Pm | a=b=c=3.8988 ?,α=β=γ=90°,5.142 g·cm-3 |
Co0.2 | Pm | a=b=c=3.8887 ?,α=β=γ=90°,5.182 g·cm-3 |
Co0.3 | Pm | a=b=c=3.8820 ?,α=β=γ=90°,5.209 g·cm-3 |
图3 (a)Co0阳极材料在10%H2和90%Ar气氛中800℃煅烧5 h后的SEM图像、TEM图像和HRTEM图像;(b)Co0.1阳极材料、(c)Co0.2阳极材料和(d)Co0.3阳极材料分别在10%H2和90%Ar气氛中于800℃ 煅烧5 h后的SEM图像;Co0.2阳极材料在10%H2和90%Ar气氛中800℃煅烧5 h后的谱图:(e)EDS图,(f)TEM图像,(g)和(h)HRTEM图像
Fig.3 (a) SEM image, TEM image and HRTEM image for Co0 sample calcined at 800℃ for 5 h in 10% H2 and 90% Ar atmosphere. SEM image for samples calcined at 800℃ for 5 h in 10% H2 and 90% Ar atmosphere: (b) Co0.1 sample, (c) Co0.2 sample, (d) Co0.3 sample. (e) EDS map, (f) TEM image, (g) and (h) HRTEM images for Co0.2 sample calcined at 800℃ for 5 h in 10% H2 and 90% Ar atmosphere
图5 YST0.9-xCCox阳极材料于10%H2和90%Ar气氛中800℃ 煅烧5 h后在室温下测得的XPS谱图(a) Ti 2p; (b) O 1s
Fig.5 XPS spectra at room temperature for YST0.9-xCCox samples calcined at 800℃ for 5 h in 10% H2 and 90% Ar atmosphere
阳极材料 | Ti3+ 面积 | Ti4+ 面积 | Ti3+ 百分比/% | 晶格氧 面积 | 吸附氧 面积 | 吸附氧 百分比/% |
---|---|---|---|---|---|---|
Co0 | 5940.4 | 9627.1 | 38.16 | 155950 | 13737.4 | 46.83 |
Co0.1 | 6120.6 | 5145.8 | 54.33 | 11971.7 | 14410.1 | 54.62 |
Co0.2 | 5627.9 | 6005.1 | 48.38 | 10007.8 | 15004.0 | 59.99 |
Co0.3 | 6840.4 | 9327.0 | 42.31 | 10316.4 | 17691.3 | 63.17 |
表2 通过XPS表征获得的Ti3+含量百分比和吸附氧含量百分比
Table 2 Ti3+ percentage and adsorbed oxygen percentage obtained by X-ray photoelectron spectra
阳极材料 | Ti3+ 面积 | Ti4+ 面积 | Ti3+ 百分比/% | 晶格氧 面积 | 吸附氧 面积 | 吸附氧 百分比/% |
---|---|---|---|---|---|---|
Co0 | 5940.4 | 9627.1 | 38.16 | 155950 | 13737.4 | 46.83 |
Co0.1 | 6120.6 | 5145.8 | 54.33 | 11971.7 | 14410.1 | 54.62 |
Co0.2 | 5627.9 | 6005.1 | 48.38 | 10007.8 | 15004.0 | 59.99 |
Co0.3 | 6840.4 | 9327.0 | 42.31 | 10316.4 | 17691.3 | 63.17 |
图6 (a)YST0.9-xCCox阳极材料制备的对称电池在800℃下的EIS谱图;(b)800℃下YST0.9-xCCox阳极材料制备的对称电池的阻抗数据的DRT分析
Fig.6 (a) EIS spectra of the symmetrical cells fabricated with YST0.9-xCCox samples at 800℃. (b) DRT analysis of the symmetrical cells fabricated with YST0.9-xCCox samples at 800℃
阳极材料 | Rp/(Ω·cm2) | RH/(Ω·cm2) | RL/(Ω·cm2) |
---|---|---|---|
Co0 | 5.32 | 1.07 | 4.25 |
Co0.1 | 4.56 | 0.83 | 3.73 |
Co0.2 | 1.63 | 0.67 | 0.96 |
Co0.3 | 3.19 | 0.31 | 2.68 |
表3 800℃下YST0.9-xCCox阳极材料制备的对称电池的阻抗数据经过拟合后的结果
Table 3 Results of resistances of the symmetrical cells fabricated with YST0.9-xCCox samples at 800℃
阳极材料 | Rp/(Ω·cm2) | RH/(Ω·cm2) | RL/(Ω·cm2) |
---|---|---|---|
Co0 | 5.32 | 1.07 | 4.25 |
Co0.1 | 4.56 | 0.83 | 3.73 |
Co0.2 | 1.63 | 0.67 | 0.96 |
Co0.3 | 3.19 | 0.31 | 2.68 |
图7 基于LSCF阴极的全电池的电化学性能(a)800℃下以Co0和Co0.2阳极材料为阳极的全电池的I–V和I–P曲线;(b)和(c)在开路条件下以Co0和Co0.2阳极材料为阳极的全电池在800℃的EIS光谱和相应的DRT分析;(d)以Co0和Co0.2阳极材料为阳极的全电池在800℃下以200 mA·cm-2的恒定电流密度工作时电压随时间变化的曲线
Fig.7 Electrochemical performance of the single cells based on the LSCF cathode(a) I–V and I–P curves of the single cell with the Co0 and Co0.2 samples as anode at 800℃; (b) and (c) EIS spectra and the corresponding DRT analysis of single cell with the Co0 and Co0.2 samples as anode at 800℃ under open-circuit conditions; (d) Terminal voltages measured at 800℃ as a function of time for the cells with Co0 and Co0.2 samples as anode operated at a constant current density of 200 mA·cm-2
阳极材料 | RΩ/(Ω·cm2) | Rp /(Ω·cm2) | RH /(Ω·cm2) | RL /(Ω·cm2) |
---|---|---|---|---|
Co0 | 0.16 | 0.89 | 0.07 | 0.82 |
Co0.2 | 0.13 | 0.34 | 0.05 | 0.29 |
表4 以Co0和Co0.2阳极材料为阳极制备的全电池在800℃时的阻抗结果
Table 4 Results of resistances of the single cells fabricated with Co0 and Co0.2 samples as anodes at 800℃
阳极材料 | RΩ/(Ω·cm2) | Rp /(Ω·cm2) | RH /(Ω·cm2) | RL /(Ω·cm2) |
---|---|---|---|---|
Co0 | 0.16 | 0.89 | 0.07 | 0.82 |
Co0.2 | 0.13 | 0.34 | 0.05 | 0.29 |
1 | Cherepy N J, Krueger R, Fiet K J, et al. Direct conversion of carbon fuels in a molten carbonate fuel cell[J]. Journal of The Electrochemical Society, 2005, 152(1): A80-A87. |
2 | Cao D, Sun Y, Wang G. Direct carbon fuel cell: fundamentals and recent developments[J]. Journal of Power Sources, 2007, 167(2): 250-257. |
3 | Liu Q, Tian Y, Xia C, et al. Modeling and simulation of a single direct carbon fuel cell[J]. Journal of Power Sources, 2008, 185(2): 1022-1029. |
4 | Liu J, Yuan H, Qiao J, et al. Hierarchical hollow nanofiber networks for high-performance hybrid direct carbon fuel cells[J]. Journal of Materials Chemistry A, 2017, 5 (33): 17216-17220. |
5 | Liu J, Qiao J, Yuan H, et al. Ni modified Ce(Mn, Fe)O2 cermet anode for high-performance direct carbon fuel cell[J]. Electrochimica Acta, 2017, 232: 174-181. |
6 | Sun K, Liu J, Feng J, et al. Investigation of B-site doped perovskites Sr2Fe1.4X0.1Mo0.5O6-δ (X=Bi, Al, Mg) as high-performance anodes for hybrid direct carbon fuel cell[J]. Journal of Power Sources, 2017, 365: 109-116. |
7 | Kaklidis N, Garagounis I, Kyriakou V, et al. Direct utilization of lignite coal in a Co-CeO2/YSZ/Ag solid oxide fuel cell[J]. International Journal of Hydrogen Energy, 2015, 40(41): 14353-14363. |
8 | Zhou W, Jiao Y, Li S D, et al. Anodes for carbon-fueled solid oxide fuel cells[J]. ChemElectroChem, 2016, 3(2): 193-203. |
9 | Sengodan S, Choi S, Jun A, et al. Layered oxygen deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells[J]. Nature Materials, 2015, 14(2): 205-209. |
10 | Atkinson A, Barnett S, Gorte R J, et al. Advanced anodes for high-temperature fuel cells[J]. Nature Materials, 2004, 3(1): 17-27. |
11 | Tao S, Irvine J T S. Discovery and characterization of novel oxide anodes for solid oxide fuel cells[J]. The Chemical Record, 2004, 4(2): 83-95. |
12 | Slater P R, Fagg D P, Irvine J T S. Synthesis and electrical characterisation of doped perovskite titanates as potential anode materials for solid oxide fuel cells[J]. Journal of Materials Chemistry, 1997, 7(12): 2495-2498. |
13 | Neagu D, Irvine J T S. Structure and properties of La0.4Sr0.4TiO3 ceramics for use as anode materials in solid oxide fuel cells[J]. Chemistry of Materials, 2010, 22(17): 5042-5053. |
14 | Périllat-Merceroz C, Gauthier G, Roussel P, et al. Synthesis and study of a Ce-doped La/Sr titanate for solid oxide fuel cell anode operating directly on methane[J]. Chemistry of Materials, 2011, 23(6): 1539-1550. |
15 | Kulkarni A, Giddey S, Badwal S P S, et al. Electrochemical performance of direct carbon fuel cells with titanate anodes[J]. Electrochimica Acta, 2014, 121: 34-43. |
16 | Huang X, Zhao H, Shen W, et al. Effect of fabrication parameters on the electrical conductivity of YxSr1-xTiO3 for anode materials[J]. Journal of Physics and Chemistry of Solids, 2006, 67(12): 2609-2613. |
17 | Li X, Zhao H, Shen W, et al. Synthesis and properties of Y-doped SrTiO3 as an anode material for SOFCs[J]. Journal of Power Sources, 2007, 166(1): 47-52. |
18 | Gao F, Zhao H, Li X, et al. Preparation and electrical properties of yttrium-doped strontium titanate with B-site deficiency[J]. Journal of Power Sources, 2008, 185(1): 26-31. |
19 | Jiang S P. Nanoscale and nano-structured electrodes of solid oxide fuel cells by infiltration: advances and challenges[J]. International Journal of Hydrogen Energy, 2012, 37(1): 449-470. |
20 | Chen K, Ai N, Lievens C, et al. Impact of volatile boron species on the microstructure and performance of nano-structured (Gd, Ce)O2 infiltrated (La, Sr)MnO3 cathodes of solid oxide fuel cells[J]. Electrochemistry Communications, 2012, 23(Complete): 129-132. |
21 | Kobsiriphat W, Madsen B D, Wang Y, et al. La0.8Sr0.2Cr1-xRuxO3-δ-Gd0.1Ce0.9O1.95 solid oxide fuel cell anodes: Ru precipitation and electrochemical performance[J]. Solid State Ionics, 2009, 180(2/3): 257-264. |
22 | Madsen B D, Kobsiriphat W, Wang Y, et al. Nucleation of nanometer-scale electrocatalyst particles in solid oxide fuel cell anodes[J]. Journal of Power Sources, 2007, 166(1): 64-67. |
23 | Kobsiriphat W, Madsen B D, Wang Y, et al. Nickel- and ruthenium-doped lanthanum chromite anodes: effects of nanoscale metal precipitation on solid oxide fuel cell performance[J]. Journal of the Electrochemical Society, 2010, 157(2): B279-B284. |
24 | Neagu D, Oh T S, Miller D N, et al. Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolution[J]. Nature Communications, 2015, 6: 8120. |
25 | Zhou N, Yin Y M, Chen Z H, et al. A regenerative coking and sulfur resistant composite anode with Cu exsolution for intermediate temperature solid oxide fuel cells[J]. Journal of the Electrochemical Society, 2018, 165(9): F629-F634. |
26 | Yang C, Yang Z, Jin C, et al. Sulfur-tolerant redox-reversible anode material for direct hydrocarbon solid oxide fuel cells[J]. Advanced Materials, 2012, 24(11): 1439-1443. |
27 | Zheng M, Wang S, Li M, et al. H2 and CO oxidation process at the three-phase boundary of Cu-ceria cermet anode for solid oxide fuel cell[J]. Journal of Power Sources, 2017, 345: 165-175. |
28 | Lu X C, Zhu J H. Cu(Pd)-impregnated La0.75Sr0.25Cr0.5Mn0.5O3-δ anodes for direct utilization of methane in SOFC[J]. Solid State Ionics, 2007, 178(25): 1467-1475. |
29 | Cui S H, Li J H, Zhou X W, et al. Cobalt doped LaSrTiO3-δ as an anode catalyst: effect of Co nanoparticle precipitation on SOFCs operating on H2S-containing hydrogen[J]. Journal of Materials Chemistry-A, 2013, 1(34): 9689-9696. |
30 | Adijanto L, Padmanabhan V B, Gorte R J, et al. Polarization-induced hysteresis in CuCo-doped rare earth vanadates SOFC anodes[J]. Journal of The Electrochemical Society, 2012, 159(11): F751-F756. |
31 | Singh S, Jha P A, Presto S, et al. Structural and electrical conduction behaviour of yttrium doped strontium titanate: anode material for SOFC application[J]. Journal of Alloys and Compounds, 2018, 748(5): 637-644. |
32 | Kumar P, Presto S, Sinha A S K, et al. Effect of samarium (Sm3+) doping on structure and electrical conductivity of double perovskite Sr2NiMoO6 as anode material for SOFC[J]. Journal of Alloys and Compounds, 2017, 725: 1123-1129. |
33 | Vutetakis D G, Skidmore D R, Byker H J. Electrochemical oxidation of molten carbonate-coal slurries[J]. Journal of The Electrochemical Society, 1987, 134(12): 3027-3035. |
34 | Jiang C, Irvine J T S. Catalysis and oxidation of carbon in a hybrid direct carbon fuel cell[J]. Journal of Power Sources, 2011, 196(17): 7318-7322. |
35 | Nabae Y, Pointon K D, Irvine J T S. Electrochemical oxidation of solid carbon in hybrid DCFC with solid oxide and molten carbonate binary electrolyte[J]. Energy & Environmental Science, 2008, 1(1): 148-155. |
[1] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[2] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[3] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[4] | 曾如宾, 沈中杰, 梁钦锋, 许建良, 代正华, 刘海峰. 基于分子动力学模拟的Fe2O3纳米颗粒烧结机制研究[J]. 化工学报, 2023, 74(8): 3353-3365. |
[5] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[6] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[7] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[8] | 屈园浩, 邓文义, 谢晓丹, 苏亚欣. 活性炭/石墨辅助污泥电渗脱水研究[J]. 化工学报, 2023, 74(7): 3038-3050. |
[9] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[10] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
[11] | 陈巨辉, 张谦, 舒崚峰, 李丹, 徐鑫, 刘晓刚, 赵晨希, 曹希峰. 基于DEM方法的旋转流化床纳米颗粒流动特性研究[J]. 化工学报, 2023, 74(6): 2374-2381. |
[12] | 李瑞康, 何盈盈, 卢维鹏, 王园园, 丁皓东, 骆勇名. 电化学强化钴基阴极活化过一硫酸盐的研究[J]. 化工学报, 2023, 74(5): 2207-2216. |
[13] | 王承泽, 顾凯丽, 张晋华, 石建轩, 刘艺娓, 李锦祥. 硫化协同老化零价铁增效去除水中Cr(Ⅵ)的作用机制[J]. 化工学报, 2023, 74(5): 2197-2206. |
[14] | 郭旭, 张永政, 夏厚兵, 杨娜, 朱真珍, 齐晶瑶. 碳基材料电氧化去除水体污染物的研究进展[J]. 化工学报, 2023, 74(5): 1862-1874. |
[15] | 张正, 何永平, 孙海东, 张荣子, 孙正平, 陈金兰, 郑一璇, 杜晓, 郝晓刚. 蛇形流场电控离子交换装置用于选择性提锂[J]. 化工学报, 2023, 74(5): 2022-2033. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||