化工学报 ›› 2021, Vol. 72 ›› Issue (11): 5858-5866.DOI: 10.11949/0438-1157.20210747
李海昌(),何燕,孙洪冉,徐常蒙,李劢,宋文明,李慧芳,王晓君(
),刘治明(
)
收稿日期:
2021-06-01
修回日期:
2021-08-12
出版日期:
2021-11-05
发布日期:
2021-11-12
通讯作者:
王晓君,刘治明
作者简介:
李海昌(1995—),男,硕士研究生,基金资助:
Haichang LI(),Yan HE,Hongran SUN,Changmeng XU,Mai LI,Wenming SONG,Huifang LI,Xiaojun WANG(
),Zhiming LIU(
)
Received:
2021-06-01
Revised:
2021-08-12
Online:
2021-11-05
Published:
2021-11-12
Contact:
Xiaojun WANG,Zhiming LIU
摘要:
利用简单的静电纺丝结合刻蚀和硫化策略获得了FeS2@碳纤维(FeS2@CFs)薄膜电极,每个独特的蛋黄蛋壳结构单元与全方位三维碳纤维导电网络之间的协同效应赋予了电极材料优异的锂存储性能。作为锂离子电池负极材料时,在5 A·g-1的大电流密度下容量仍能保持在415.4 mAh·g-1,在0.5 A·g-1的电流密度下经过循环400圈的循环之后可逆容量约为977.9 mAh·g-1。更重要的是,前驱体材料具有很广泛的扩展性,这可为柔性薄膜电极材料的制备提供一种设计思路。
中图分类号:
李海昌, 何燕, 孙洪冉, 徐常蒙, 李劢, 宋文明, 李慧芳, 王晓君, 刘治明. 具有优异锂存储性能的蛋黄蛋壳结构FeS2@CFs薄膜电极[J]. 化工学报, 2021, 72(11): 5858-5866.
Haichang LI, Yan HE, Hongran SUN, Changmeng XU, Mai LI, Wenming SONG, Huifang LI, Xiaojun WANG, Zhiming LIU. Yolk-shell structural FeS2@CFs thin film electrode with excellent lithium storage performance[J]. CIESC Journal, 2021, 72(11): 5858-5866.
图1 Fe2O3、Fe3O4@CFs、FeS2@CFs-0、FeS2@CFs-20、FeS2@CFs-40和FeS2@CFs-60的XRD光谱
Fig.1 XRD patterns of Fe2O3, Fe3O4@CFs, FeS2@CFs-0, FeS2@CFs-20, FeS2@CFs-40 and FeS2@CFs-60, respectively
图2 Fe2O3前驱体的SEM图(a);FeS2@CFs-40的SEM图[(b)、(c)];FeS2@CFs-0、FeS2@CFs-20和FeS2@CFs-60的SEM图[(d)~(f)]
Fig.2 SEM image of Fe2O3 precursor (a); SEM images of FeS2@CFs-40[ (b),(c)]; SEM images of FeS2@CFs-0, FeS2@CFs-20 and FeS2@CFs-60[(d)—(f)]
图5 FeS2@CFs-40的XPS全谱(a)及对应的Fe 2p(b)、S 2p(c)和N 1s(d)精细谱
Fig.5 XPS full spectrum of FeS2@CFs-40 (a) and corresponding fine spectra of Fe 2p (b), S 2p (c) and N 1s (d)
图6 FeS2@CFs-40在0.1 mV·s-1下的CV曲线(a);FeS2@CFs-40在0.1 A·g-1的前四圈充放电曲线(b);FeS2@CFs-40、FeS2@CFs-0的倍率性能(c);FeS2@CFs-40、FeS2@CFs-0在0.5 A·g-1时的循环性能(d);FeS2@CFs-0、FeS2@CFs-20、FeS2@CFs-40、FeS2@CFs-60在1 A·g-1时的循环性能(e)
Fig.6 CV curve of FeS2@CFs-40 at 0.1 mV·s-1 (a); FeS2@CFs-40 charge-discharge curve of the first four cycles at 0.1A·g-1 (b); Rate performance of FeS2@CFs-40 and FeS2@CFs-0 (c); Cycling performance of FeS2@CFs-40 and FeS2@CFs-0 at 0.5 A·g-1 (d); Cycling performance of FeS2@CFs-0, FeS2@CFs-20, FeS2@CFs-40 and FeS2@CFs-60 at 1 A·g-1, respectively (e)
材料类型 | 循环性能 | 倍率性能 | 参考文献 | |||
---|---|---|---|---|---|---|
电流密度/(A·g-1) | 圈数/n | 比容量/(mAh·g-1) | 电流密度/(A·g-1) | 比容量/(mAh·g-1) | ||
FeS2@C/rGO | 0.89 | 250 | 412 | 1.78 | 389 | [ |
FeS2@carbon fiber | 0.2 | 300 | 280 | 0.2 | 275 | [ |
FeS2 microspheres | 2 | 100 | 495 | 8 | 318 | [ |
FeS2/C | 0.1 | 80 | 1100 | 2 | 866 | [ |
GF/FeS2@C | 2 | 400 | 678.2 | 20 | 530 | [ |
FeS2@POC | 2 | 200 | 590 | 5 | 381 | [ |
FeS2@CFs-40 | 1 | 500 | 590.8 | 5 | 415.4 | 本文 |
表1 FeS2负极材料用于锂离子电池的性能比较
Table 1 Performance comparison of FeS2 anode materials for LIBs
材料类型 | 循环性能 | 倍率性能 | 参考文献 | |||
---|---|---|---|---|---|---|
电流密度/(A·g-1) | 圈数/n | 比容量/(mAh·g-1) | 电流密度/(A·g-1) | 比容量/(mAh·g-1) | ||
FeS2@C/rGO | 0.89 | 250 | 412 | 1.78 | 389 | [ |
FeS2@carbon fiber | 0.2 | 300 | 280 | 0.2 | 275 | [ |
FeS2 microspheres | 2 | 100 | 495 | 8 | 318 | [ |
FeS2/C | 0.1 | 80 | 1100 | 2 | 866 | [ |
GF/FeS2@C | 2 | 400 | 678.2 | 20 | 530 | [ |
FeS2@POC | 2 | 200 | 590 | 5 | 381 | [ |
FeS2@CFs-40 | 1 | 500 | 590.8 | 5 | 415.4 | 本文 |
1 | Li M, Lu J, Chen Z W, et al. 30 years of lithium-ion batteries[J]. Advanced Materials, 2018, 30(33): 1800561. |
2 | Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367. |
3 | Wu B, Song H H, Zhou J S, et al. Iron sulfide-embedded carbon microsphere anode material with high-rate performance for lithium-ion batteries[J]. Chemical Communications, 2011, 47(30): 8653. |
4 | Goodenough J B, Kim Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3): 587-603. |
5 | Liu Y Y, Zhong M, Kong L J, et al. Fe1–xS/nitrogen and sulfur Co-doped carbon composite derived from a nanosized metal–organic framework for high-performance lithium-ion batteries[J]. Inorganic Chemistry Frontiers, 2019, 6(1): 50-56. |
6 | Zhao K N, Wen M Y, Dong Y F, et al. Thermal induced strain relaxation of 1D iron oxide for solid electrolyte interphase control and lithium storage improvement[J]. Advanced Energy Materials, 2017, 7(6): 1601582. |
7 | Xing C C, Zhang D, Cao K, et al. In situ growth of FeS microsheet networks with enhanced electrochemical performance for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(16): 8742-8749. |
8 | Park G D, Lee J K, Kang Y C. Electrochemical reaction mechanism of amorphous iron selenite with ultrahigh rate and excellent cyclic stability performance as new anode material for lithium-ion batteries[J]. Chemical Engineering Journal, 2020, 389: 124350. |
9 | Shi J W, Zu L H, Gao H Y, et al. Silicon-based self-assemblies for high volumetric capacity Li-ion batteries via effective stress management[J]. Advanced Functional Materials, 2020, 30(35): 2002980. |
10 | Son Y, Kim N, Lee T, et al. Calendering-compatible macroporous architecture for silicon-graphite composite toward high-energy lithium-ion batteries[J]. Advanced Materials, 2020, 32(37): 2003286. |
11 | Song J H, Xiao D D, Jia H P, et al. A comparative study of pomegranate Sb@C yolk-shell microspheres as Li and Na-ion battery anodes[J]. Nanoscale, 2018, 11(1): 348-355. |
12 | Wang J, Fang J J, Zhao H L, et al. Raspberry-like hierarchical structure FeS2 decorated by dual-carbon framework as high-performance cathode for rechargeable lithium batteries[J]. Carbon, 2021, 171: 171-178. |
13 | Zhu Y, Fan X, Suo L, et al. Electrospun FeS2@Carbon fiber electrode as a high energy density cathode for rechargeable lithium batteries[J]. ACS Nano, 2016, 10(1): 1529-1538. |
14 | Hu Z, Zhang K, Zhu Z Q, et al. FeS2 microspheres with an ether-based electrolyte for high-performance rechargeable lithium batteries[J]. Journal of Materials Chemistry A, 2015, 3(24): 12898-12904. |
15 | Xiao Y, Hwang J Y, Belharouak I, et al. Na storage capability investigation of a carbon nanotube-encapsulated Fe1–xS composite[J]. ACS Energy Letters, 2017, 2(2): 364-372. |
16 | 夏青, 徐宇兴, 周运成, 等. 核壳结构米粒状FeS2/C纳米材料制备及储锂性能研究[J]. 化工学报, 2021, 72(5): 2849-2856. |
Xia Q, Xu Y X, Zhou Y C, et al. Preparation and lithium storage performance of rice-like core-shell FeS2/C nanoparticles[J]. CIESC Journal, 2021, 72(5): 2849-2856. | |
17 | Jing P, Wang Q, Wang B Y, et al. Encapsulating yolk-shell FeS2@carbon microboxes into interconnected graphene framework for ultrafast lithium/sodium storage[J]. Carbon, 2020, 159: 366-377. |
18 | Yin W H, Li W Y, Wang K, et al. FeS2@Porous octahedral carbon derived from metal-organic framework as a stable and high capacity anode for lithium-ion batteries[J]. Electrochimica Acta, 2019, 318: 673-682. |
19 | Sun Z H, Wu X L, Gu Z Y, et al. Rationally designed nitrogen-doped yolk-shell Fe7Se8/Carbon nanoboxes with enhanced sodium storage in half/full cells[J]. Carbon, 2020, 166: 175-182. |
20 | Zhang K L, Zhang T W, Liang J W, et al. A potential pyrrhotite (Fe7S8) anode material for lithium storage[J]. RSC Advances, 2015, 5(19): 14828-14831. |
21 | Liu Z M, Hu F, Xiang J, et al. A nano-micro hybrid structure composed of Fe7S8 nanoparticles embedded in nitrogen-doped porous carbon framework for high-performance lithium/sodium-ion batteries[J]. Particle & Particle Systems Characterization, 2018, 35(8): 1800163. |
22 | Yao Y Y, Zheng J C, Gong Z Y, et al. Metal-organic framework derived flower-like FeS/C composite as an anode material in lithium-ion and sodium-ion batteries[J]. Journal of Alloys and Compounds, 2019, 790: 288-295. |
23 | Frey M, Zenn R K, Warneke S, et al. Easily accessible, textile fiber-based sulfurized poly(acrylonitrile) as Li/S cathode material: correlating electrochemical performance with morphology and structure[J]. ACS Energy Letters, 2017, 2(3): 595-604. |
24 | Wei X, Li W H, Shi J N, et al. FeS@C on carbon cloth as flexible electrode for both lithium and sodium storage[J]. ACS Applied Materials & Interfaces, 2015, 7(50): 27804-27809. |
25 | Haridas A K, Heo J, Li X Y, et al. A flexible and free-standing FeS/sulfurized polyacrylonitrile hybrid anode material for high-rate sodium-ion storage[J]. Chemical Engineering Journal, 2020, 385: 123453. |
26 | Liu Y C, Zhang N, Jiao L F, et al. Tin nanodots encapsulated in porous nitrogen-doped carbon nanofibers as a free-standing anode for advanced sodium-ion batteries[J]. Advanced Materials, 2015, 27(42): 6702-6707. |
27 | Zheng F C, Yang Y, Chen Q W. High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework[J]. Nature Communications, 2014, 5: 5261. |
28 | Yuan Y, Chen Z W, Yu H X, et al. Heteroatom-doped carbon-based materials for lithium and sodium ion batteries[J]. Energy Storage Materials, 2020, 32: 65-90. |
29 | Zhang Q B, Liao J, Liao M, et al. One-dimensional Fe7S8@C nanorods as anode materials for high-rate and long-life lithium-ion batteries[J]. Applied Surface Science, 2019, 473: 799-806. |
30 | Wang H, Qian X K, Wu H Y, et al. MOF-derived rod-like composites consisting of iron sulfides embedded in nitrogen-rich carbon as high-performance lithium-ion battery anodes[J]. Applied Surface Science, 2019, 481: 33-39. |
31 | Xue H T, Yu D Y W, Qing J, et al. Pyrite FeS2 microspheres wrapped by reduced graphene oxide as high-performance lithium-ion battery anodes[J]. Journal of Materials Chemistry A, 2015, 3(15): 7945-7949. |
32 | Lu J H, Lian F, Guan L L, et al. Adapting FeS2 micron particles as an electrode material for lithium-ion batteries via simultaneous construction of CNT internal networks and external cages[J]. Journal of Materials Chemistry A, 2019, 7(3): 991-997. |
33 | Zhang X J, Gao X Y, Li J F, et al. In-situ synthesis of Fe7S8 nanocrystals decorated on N, S-codoped carbon nanotubes as anode material for high-performance lithium-ion batteries[J]. Journal of Colloid and Interface Science, 2020, 579: 699-706. |
34 | He J R, Li Q, Chen Y F, et al. Self-assembled cauliflower-like FeS2 anchored into graphene foam as free-standing anode for high-performance lithium-ion batteries[J]. Carbon, 2017, 114: 111-116. |
[1] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[2] | 康飞, 吕伟光, 巨锋, 孙峙. 废锂离子电池放电路径与评价研究[J]. 化工学报, 2023, 74(9): 3903-3911. |
[3] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[4] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[5] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[6] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[7] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[8] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[9] | 屈园浩, 邓文义, 谢晓丹, 苏亚欣. 活性炭/石墨辅助污泥电渗脱水研究[J]. 化工学报, 2023, 74(7): 3038-3050. |
[10] | 张澳, 罗英武. 低模量、高弹性、高剥离强度丙烯酸酯压敏胶[J]. 化工学报, 2023, 74(7): 3079-3092. |
[11] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[12] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[13] | 邢美波, 张中天, 景栋梁, 张洪发. 磁调控水基碳纳米管协同多孔材料强化相变储/释能特性[J]. 化工学报, 2023, 74(7): 3093-3102. |
[14] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[15] | 王志龙, 杨烨, 赵真真, 田涛, 赵桐, 崔亚辉. 搅拌时间和混合顺序对锂离子电池正极浆料分散特性的影响[J]. 化工学报, 2023, 74(7): 3127-3138. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 256
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 558
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||