化工学报 ›› 2017, Vol. 68 ›› Issue (6): 2555-2562.DOI: 10.11949/j.issn.0438-1157.20161596
张琦, 吴佳艺, 卢平, 吴涛, 邵静萍, 邓晓艳
收稿日期:
2016-11-10
修回日期:
2017-02-26
出版日期:
2017-06-05
发布日期:
2017-06-05
通讯作者:
卢平
基金资助:
国家自然科学基金项目(51606105);江苏省自然科学基金项目(BK20130905)
ZHANG Qi, WU Jiayi, LU Ping, WU Tao, SHAO Jingping, DENG Xiaoyan
Received:
2016-11-10
Revised:
2017-02-26
Online:
2017-06-05
Published:
2017-06-05
Contact:
10.11949/j.issn.0438-1157.20161596
Supported by:
supported by the National Natural Science Foundation of China (51606105) and the Natural Science Foundation of Jiangsu Province (BK20130905)
摘要:
开发了一种新型磁场辅助氨法烟气脱碳技术。含碳烟气通入混有磁性颗粒的氨水溶液,在外加磁场的作用下发生脱碳反应。对该技术的运行特性开展了实验研究。结果表明,外加8 mT恒稳磁场,2 g·L-1纳米级Fe3O4颗粒,氨水的CO2脱除效率比不添加磁场和颗粒时最多可提高8.8%。外加磁场可以有效提高低浓度氨水的CO2脱除效率。在模拟烟气流量增加时,外加磁场能有效减缓CO2脱除效率下降的趋势。同时,外加磁场使得CO2脱除效率曲线向低温方向移动5℃,有助于提高低温条件下的CO2脱除效率。磁场可提高气液接触效率、降低相间传质阻力、增强氨水反应活性,从而提高氨水吸收CO2性能。
中图分类号:
张琦, 吴佳艺, 卢平, 吴涛, 邵静萍, 邓晓艳. 磁场对氨水吸收烟气中CO2的促进作用[J]. 化工学报, 2017, 68(6): 2555-2562.
ZHANG Qi, WU Jiayi, LU Ping, WU Tao, SHAO Jingping, DENG Xiaoyan. CO2 absorption by aqueous ammonia solution with use of external magnetic field[J]. CIESC Journal, 2017, 68(6): 2555-2562.
[1] | 朱德臣. 燃煤烟气CO2化学吸收技术研究 [D]. 杭州: 浙江大学, 2011. |
ZHU D C. Chemical absorption of CO2 from flue gas [D]. Hangzhou: Zhejiang University, 2011. | |
[2] | 陈健, 罗伟亮, 李晗. 有机胺吸收二氧化碳的热力学和动力学研究进展 [J]. 化工学报, 2014, 65 (1): 12-21. |
CHEN J, LUO W L, LI H. Advances in thermodynamics and kinetics of organic amine to absorb carbon dioxide [J]. CIESC Journal, 2014, 65 (1): 12-21. | |
[3] | SHAKERIAN F, KIM K H, SZULEJKO J E, et al. A comparative review between amines and ammonia as sorptive media for post-combustion CO2 capture [J]. Applied Energy, 2015, 148:10-22. |
[4] | BAI H, YEH A C. Removal of CO2 greenhouse gas by ammonia scrubbing [J]. Industrial & Engineering Chemistry Research, 1997, 36 (6): 2490-2493. |
[5] | YEH A C, BAI H. Comparison of ammonia and monoethanolamine solvents to reduce CO2 greenhouse gas emissions [J]. Science of the Total Environment, 1999, 228 (2): 121-133. |
[6] | KIM Y J, YOU J K, HONG W H, et al. Characteristics of CO2 absorption into aqueous ammonia [J]. Separation Science and Technology, 2008, 43 (4): 766-777. |
[7] | QIN F, WANG S J, HARTONO A, et al. Kinetics of CO2 absorption in aqueous ammonia solution [J]. International Journal of Greenhouse Gas Control, 2010, 4 (5): 729-738. |
[8] | PARK S Y, YI K B, CHANG H K, et al. Selection of optimal operating conditions for a continuous CO2-capture process using an aqueous ammonia solution [J]. Energy & Fuels, 2010, 24 (6): 3704-3709. |
[9] | VERSTEEG P, RUBIN E S. A technical and economic assessment of ammonia-based post-combustion CO2 capture at coal-fired power plants [J]. International Journal of Greenhouse Gas Control, 2011, 5 (6):1596-1605. |
[10] | ZHANG M K, GUO Y C. Rate based modeling of absorption and regeneration for CO2 capture by aqueous ammonia solution [J]. Applied Energy, 2013, 111 (4): 142-152. |
[11] | DANIEL S, MATTEO G, MARCO M. Formation of solids in ammonia-based CO2 capture processes-identification of criticalities through thermodynamic analysis of the CO2-NH3-H2O system [J]. Chemical Engineering Science, 2015, 133: 170-180. |
[12] | QUE H L, CHEN C C. Thermodynamic modeling of the NH3-CO2-H2O system with electrolyte NRTL model [J]. Industrial & Engineering Chemistry Research, 2011, 50 (19): 11406-11421. |
[13] | BAK C U, ASIF M, KIM W S. Experimental study on CO2 capture by chilled ammonia process [J]. Chemical Engineering Journal, 2014, 265 (5): 1-8. |
[14] | YU J, WANG S. Development of a novel process for aqueous ammonia based CO2 capture [J]. International Journal of Greenhouse Gas Control, 2015, 39: 129-138. |
[15] | 马双忱, 陈公达, 温佳琪, 等. 氨法脱碳过程中氨逃逸规律及其抑制 [J]. 化工学报, 2016, 67 (5): 2064-2069. |
MA S C, CHEN G D, WEN J Q, et al. Ammonia escape and its prevention in CO2 absorption process using ammonia solution [J]. CIESC Journal, 2016, 67 (5): 2064-2069. | |
[16] | 张宇, 高建民, 何明月, 等. 两种强化低碳化度氨水结晶的新型氨法脱碳工艺 [J]. 化工学报, 2015, 66 (6): 2123-1230. |
ZHANG Y, GAO J M, HE M Y, et al. Two kinds of new carbon capture technology by ammonia based on reinforced crystallization [J]. CIESC Journal, 2015, 66 (6): 2123-1230. | |
[17] | 冷浩, 高建民, 张宇, 等. 强化结晶氨法脱碳实验研究 [J]. 化工学报, 2016, 67 (6): 2440-2448. |
LENG H, GAO J M, ZHANG Y, et al. Carbon capture by ammonia with reinforced crystallization [J]. CIESC Journal, 2016, 67 (6): 2440-2448. | |
[18] | 彭远昌, 赵兵涛, 李蕾蕾, 等. 鼓泡式反应器高径比对氨法烟气脱碳性能的影响 [J]. 化工环保, 2013, 33 (3): 206-209. |
PENG Y C, ZHAO B T, LI L L, et al. Effect of bubble reactor height to diameter ratio of ammonia flue gas decarbonization performance [J]. Environmental Protection of Chemical Industry, 2013, 33 (3): 206-209. | |
[19] | 马双忱, 孙云雪, 赵毅, 等. 氨水捕集模拟烟气中二氧化碳的实验与理论研究 [J]. 化学学报, 2011, 69 (12): 1469-1474. |
MA S C, SUN Y X, ZHAO Y, et al. Experimental and theoretical studies simulated flue gas ammonia trapping carbon dioxide [J]. Acta Chemical, 2011, 69 (12): 1469-1474. | |
[20] | 刘芳. 再生氨法脱除燃煤电厂烟气中二氧化碳的实验研究 [D]. 北京: 清华大学, 2009. |
LIU F. Experimental study of regeneration ammonia removal of carbon dioxide in the flue gas of coal-fired power plant [D]. Beijing: Tsinghua University, 2009. | |
[21] | RESNIK K P, PENNLINE H W. Study of an ammonia-based wet scrubbing process in a continuous flow system [J]. Fuel, 2013, 105 (1):184-191. |
[22] | MA S C, ZANG B, SONG H H, et al. Research on mass transfer of CO2 absorption using ammonia solution in spray tower [J]. International Journal of Heat & Mass Transfer, 2013, 67 (12): 696-703. |
[23] | KONG D J, ZHANG Y F, LI N, et al. Experimental investigation on gas-liquid flow, heat and mass transfer characteristics in a dual-contact-flow absorption tower [J]. Chemical Engineering Research & Design, 2014, 92 (1): 13-24. |
[24] | ZHAO B T, SU Y X, TAO W W. Mass transfer performance of CO2 capture in rotating packed bed: dimensionless modeling and intelligent prediction [J]. Applied Energy, 2014, 136: 132-142. |
[25] | LI J L, CHEN B H. Review of CO2 absorption using chemical solvents in hollow fiber membrane contactors [J]. Separation & Purification Technology, 2005, 41 (2): 109-122. |
[26] | YANG N, YU H, XU D Y, et al. Amino acids/NH3 mixtures for CO2 capture: effect of neutralization methods on CO2 mass transfer and NH3 vapour loss [J]. Energy Procedia, 2014, 63: 773-780. |
[27] | LI L, CONWANE W, PUXTY G, et al. The effect of piperazine (PZ) on CO2 absorption kinetics into aqueous ammonia solutions at 25.0℃ [J]. International Journal of Greenhouse Gas Control, 2015, 36: 135-143. |
[28] | ZHI H L, LEE K T, BHATIA S, et al. Post-combustion carbon dioxide capture: evolution towards utilization of nanomaterials [J]. Renewable & Sustainable Energy Reviews, 2012, 16 (5): 2599-2609. |
[29] | JUNG J Y, LEE J W, KANG Y T. CO2 absorption characteristics of nanoparticle suspensions in methanol [J]. Journal of Mechanical Science and Technology, 2012, 26 (8): 2285-2290. |
[30] | JIANG J Z, ZHAO B, CAO M, et al. Chemical absorption kinetics in MEA solution with nano-particles [J]. Energy Procedia, 2013, 37: 518-524. |
[31] | YANG L, DU K, NIU X F, et al. Experimental study on enhancement of ammonia-water falling film absorption by adding nano-particles [J]. International Journal of Refrigeration, 2011, 34 (3): 640-647. |
[32] | ZENG P, ZHOU T, YANG J S. Behavior of mixtures of nano-particles in magnetically assisted fluidized bed [J]. Chemical Engineering and Processing, 2008, 47: 101-108. |
[33] | 宗保宁, 慕旭宏, 孟祥堃, 等. 镍基非晶态合金加氢催化剂与磁稳定床反应器的开发与工业应用 [J]. 化工进展, 2002, 21 (8): 536-539. |
ZONG B N, MU X H, MENG X K, et al. Amorphous skeletal nickel-based alloy catalyst and magnetically stabilized bed reactor [J]. Chemical Industry & Engineering Progress, 2002, 21 (8): 536-539. | |
[34] | LIU Y A, KEITY H, COLBERG R. Fundamental and practical developments of magnetofluidized beds [J]. Powder Technology, 1991, 64 (1/2): 3-41. |
[35] | ZHANG Q, GUI K T, WANG X B. Effects of magnetic fields on improving mass transfer in flue gas desulfurization using a fluidized bed [J]. Heat and Mass Transfer, 2016, 52: 331-336. |
[36] | 姚桂焕, 陆芳, 王芳, 等. 铁基磁流化床SCR烟气脱硝的磁场效应 [J]. 工程热物理学报, 2009, 31: 439-442. |
YAO G H, LU F, WANG F, et al. Reaction mechanism of flue gas desulfurization magnetically fluidized bed strengthen iron-based magnetic field effect fluidized-bed selective catalytic reduction flue gas denitrification [J]. Journal of Engineering Thermophysics, 2009, 31: 439-442. | |
[37] | 张春, 武卫东, 李增扬, 等. 磁场及纳米磁性流体强化氨水鼓泡吸收实验研究 [J]. 磁性材料及器件, 2014, 45 (3): 21-24. |
ZHANG C, WU W D, LI Z Y, et al. Experimental study of ammonia bubble absorption of magnetic field and magnetic nanoparticles hydroenhancement [J]. Journal of Magnetic Materials and Devices, 2014, 45 (3):21-24. | |
[38] | 武卫东, 庞常伟, 盛伟, 等. 单体Ag纳米流体强化氨水鼓泡吸收特性 [J]. 化工学报, 2010, 61 (5): 1112-1117. |
WU W D, PANG C W, SHENG W. Enhancement effects of Ag nanoparticles on ammonia bubble absorption [J]. CIESC Journal, 2010, 61 (5): 1112-1117. | |
[39] | 齐国杰. 氨水溶液联合脱除二氧化碳和二氧化硫的研究 [D]. 北京: 清华大学, 2013. |
QI G J. Ammonia-based capture of CO2 and SO2 from flue gas [D]. Beijing: Tsinghua University, 2013. | |
[40] | 牛振祺, 郭印诚, 林文漪. MEA, NaOH与氨水喷雾捕集CO2性能 [J]. 清华大学学报(自然科学版), 2010, (7): 1130-1134. |
NIU Z Q, GUO Y C, LIN W Y. MEA, NaOH and ammonia spray CO2 capture performance [J]. Journal of Tsinghua University (Science and Technology Edition), 2010, (7): 1130-1134. |
[1] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[2] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[3] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[4] | 曾如宾, 沈中杰, 梁钦锋, 许建良, 代正华, 刘海峰. 基于分子动力学模拟的Fe2O3纳米颗粒烧结机制研究[J]. 化工学报, 2023, 74(8): 3353-3365. |
[5] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[6] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[7] | 邢美波, 张中天, 景栋梁, 张洪发. 磁调控水基碳纳米管协同多孔材料强化相变储/释能特性[J]. 化工学报, 2023, 74(7): 3093-3102. |
[8] | 陈巨辉, 张谦, 舒崚峰, 李丹, 徐鑫, 刘晓刚, 赵晨希, 曹希峰. 基于DEM方法的旋转流化床纳米颗粒流动特性研究[J]. 化工学报, 2023, 74(6): 2374-2381. |
[9] | 毛磊, 刘冠章, 袁航, 张光亚. 可捕集CO2的纳米碳酸酐酶粒子的高效制备及性能研究[J]. 化工学报, 2023, 74(6): 2589-2598. |
[10] | 王皓, 唐思扬, 钟山, 梁斌. MEA吸收CO2富液解吸过程中固体颗粒表面的强化作用分析[J]. 化工学报, 2023, 74(4): 1539-1548. |
[11] | 杨灿, 孙雪琦, 尚明华, 张建, 张香平, 曾少娟. 相变离子液体体系吸收分离CO2的研究现状及展望[J]. 化工学报, 2023, 74(4): 1419-1432. |
[12] | 李木金, 胡松, 施德磐, 赵鹏, 高瑞, 李进龙. 环氧丁烷尾气溶剂吸收及精制工艺[J]. 化工学报, 2023, 74(4): 1607-1618. |
[13] | 何万媛, 陈一宇, 朱春英, 付涛涛, 高习群, 马友光. 阵列凸起微通道内气液两相传质特性研究[J]. 化工学报, 2023, 74(2): 690-697. |
[14] | 王煦清, 严圣林, 朱礼涛, 张希宝, 罗正鸿. 填料塔中有机胺吸收CO2气液传质的研究进展[J]. 化工学报, 2023, 74(1): 237-256. |
[15] | 艾承燚, 乔金硕, 王振华, 孙旺, 孙克宁. 原位析出纳米合金的PrBaFe2O6-δ 基阳极构筑及其在固体碳燃料电池中的应用研究[J]. 化工学报, 2022, 73(8): 3708-3719. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||