化工学报 ›› 2021, Vol. 72 ›› Issue (2): 928-936.DOI: 10.11949/0438-1157.20201081
收稿日期:
2020-08-03
修回日期:
2020-10-23
出版日期:
2021-02-05
发布日期:
2021-02-05
通讯作者:
朱春英
作者简介:
陈祯(1995—),男,硕士研究生, 基金资助:
CHEN Zhen(),LIU Jing,ZHU Chunying(),FU Taotao,MA Youguang
Received:
2020-08-03
Revised:
2020-10-23
Online:
2021-02-05
Published:
2021-02-05
Contact:
ZHU Chunying
摘要:
实验研究了T型微通道内浆料中气泡的生成过程和尺寸。聚丙乙烯微球浆料和N2分别为连续相和分散相。气泡的生成过程可分为三个阶段:膨胀阶段、挤压阶段和快速夹断阶段。随着浆料浓度的增大,膨胀阶段时长几乎没有变化,挤压阶段显著缩短,而快速夹断阶段略有缩短。在膨胀阶段和快速夹断阶段,气泡颈部宽度与无量纲剩余时间均呈幂率关系,而挤压阶段气泡颈部宽度与时间呈线性关系。考察了浆料浓度、气相和浆料流量对气泡生成尺寸的影响。结果表明气泡尺寸随气相流量的增大而增大,随液相流量和浆料浓度的增大而减小。
中图分类号:
陈祯, 刘静, 朱春英, 付涛涛, 马友光. T型微通道内浆料体系中气泡生成行为与尺寸预测[J]. 化工学报, 2021, 72(2): 928-936.
CHEN Zhen, LIU Jing, ZHU Chunying, FU Taotao, MA Youguang. Formation and size prediction of bubble in slurry system in T-junction microchannel[J]. CIESC Journal, 2021, 72(2): 928-936.
CS/%(mass) | ρ/(kg·m-3) | σ/(mN·m-1) | K/(Pa·sn) | n |
---|---|---|---|---|
0.1 | 1125.8 | 34.69 | 0.035 | 0.48 |
0.4 | 1126.0 | 34.87 | 0.062 | 0.44 |
1.0 | 1126.5 | 35.51 | 0.110 | 0.42 |
2.0 | 1126.6 | 35.57 | 0.250 | 0.39 |
表1 不同浓度浆料液的物性参数
Table 1 Physical properties of slurry with different particle concentration
CS/%(mass) | ρ/(kg·m-3) | σ/(mN·m-1) | K/(Pa·sn) | n |
---|---|---|---|---|
0.1 | 1125.8 | 34.69 | 0.035 | 0.48 |
0.4 | 1126.0 | 34.87 | 0.062 | 0.44 |
1.0 | 1126.5 | 35.51 | 0.110 | 0.42 |
2.0 | 1126.6 | 35.57 | 0.250 | 0.39 |
1 | Wang Z, Shui H, Zhu Y, et al. Catalysis of SO42- / ZrO2 solid acid for the liquefaction of coal[J]. Fuel, 2009, 88(5): 885-889. |
2 | Félix G, Ancheyta J. Regular solution model to predict the asphaltenes flocculation and sediments formation during hydrocracking of heavy oil[J]. Fuel, 2020, 260: 116160. |
3 | Zhang C, Liu X, Liu T, et al.Optimizing both the CoMo/Al2O3 catalyst and the technology for selectivity enhancement in the hydrodesulfurization of FCC gasoline[J]. Applied Catalysis A: General, 2019, 575(8): 187-197. |
4 | 李根浩, 袁希钢, 宋文琦. 捕捉微通道内Taylor流特性的一种渐变网格划分方法[J]. 化学工业与工程, 2016, 33(5): 86-95. |
Li G H, Yuan X G, Song W Q. Gradient mesh approach for capturing characteristics of gas-liquid Taylor flow in microchannel[J]. Chemical Industry and Engineering, 2016, 33(5): 86-95. | |
5 | Teh S Y, Lin R, Hung L H, et al. Droplet microfluidics[J]. Lab on a Chip, 2008, 8(2): 198-220. |
6 | 荀涛, 蔡旺锋, 张旭斌. 微通道中气-液-液三相流流型及传质研究[J]. 化学工业与工程, 2017, 34(6): 81-87. |
Xun T, Cai W F, Zhang X B. The flow pattern and mass transfer of gas-liquid-liquid three-phase flow in microchannel[J]. Chemical Industry and Engineering, 2017, 34(6): 81-87. | |
7 | Liang Q Q, Ma X H, Wang K, et al. Scaling of the bubble/slug length of Taylor flow in a meandering microchannel[J]. Chinese Journal of Chemical Engineering, 2019, 27(10): 2615-2625. |
8 | 付涛涛, 朱春英, 马友光. T 形微通道内气泡(液滴)生成机理的研究进展[J]. 化工进展, 2011, 30(11): 2357-2363. |
Fu T T, Zhu C Y, Ma Y G. Progress in bubble (droplet) formation mechanism in T-shaped microchannels[J]. Chemical Industry and Engineering Progress, 2011, 30(11): 2357-2363. | |
9 | Thorsen T, Maerkl S J, Quake S R. Microfluidic large-scale integration[J]. Science, 2002, 298(5593): 580-584. |
10 | Xu Q B, Hashimoto M, Dang T T, et al. Preparation of monodisperse biodegradable polymer microparticles using a microfluidic flow-focusing device for controlled drug delivery[J]. Small, 2009, 5(13): 1575-1581. |
11 | Kleinstreuer C, Li J, Koo J. Microfluidics of nano-drug delivery[J]. International Journal of Heat and Mass Transfer, 2008, 51(23/24): 5590-5597. |
12 | Zhao C X. Multiphase flow microfluidics for the production of single or multiple emulsions for drug delivery[J]. Advanced Drug Delivery Reviews, 2013, 65(11/12): 1420-1446. |
13 | Song H, Tice J D, Ismagilov R F. A microfluidic system for controlling reaction networks in time [J]. Angewandte Chemie-International Edition, 2003, 42(7): 768-772. |
14 | Song H, Chen D L, Ismagilov R F. Reactions in droplets in microfluidic channels[J]. Angewandte Chemie - International Edition, 2006, 45(44): 7336-7356. |
15 | DeMello A J. Control and detection of chemical reactions in microfluidic systems[J]. Nature, 2006, 442(7101): 394-402. |
16 | Sun B J, Shum H C, Holtze C, et al. Microfluidic melt emulsification for encapsulation and release of actives[J]. ACS Applied Materials and Interfaces, 2010, 2(12): 3411-3416. |
17 | 王彦, 王靖涛. 微流控技术制备聚酰胺微胶囊的工艺研究[J]. 化学工业与工程, 2018, 35(6): 20-25. |
Wang Y, Wang J T. Preparation of polyamide microcapsules based on microfluidics[J]. Chemical Industry and Engineering, 2018, 35(6): 20-25. | |
18 | Maan A A, Nazir A, Khan M K I, et al. Microfluidic emulsification in food processing[J]. Journal of Food Engineering, 2015, 147: 1-7. |
19 | Karnik R, Gu F, Basto P, et al. Microfluidic platform for controlled synthesis of polymeric nanoparticles[J]. Nano Letters, 2008, 8(9): 2906-2912. |
20 | Song Y, Modrow H, Henry L L, et al. Microfluidic synthesis of cobalt nanoparticles[J]. Chemistry of Materials, 2006, 18(12): 2817-2827. |
21 | Jahn A, Reiner J E, Vreeland W N, et al. Preparation of nanoparticles by continuous-flow microfluidics[J]. Journal of Nanoparticle Research, 2008, 10(6): 925-934. |
22 | Liedtke A K, Scheiff F, Bornette F, et al. Liquid-solid mass transfer for microchannel suspension catalysis in gas-liquid and liquid-liquid segmented flow[J]. Industrial and Engineering Chemistry Research, 2015, 54(17): 4699-4708. |
23 | Cai W, Zhang J, Zhang X, et al. Enhancement of CO2 absorption under taylor flow in the presence of fine particles[J]. Chinese Journal of Chemical Engineering, 2013, 21(2): 135-143. |
24 | Yu Y E, Khodaparast S, Stone H A. Armoring confined bubbles in the flow of colloidal suspensions[J]. Soft Matter, 2017, 13(15): 2857-2865. |
25 | de Menech M, Garstecki P, Jousse F, et al. Transition from squeezing to dripping in a microfluidic T-shaped junction[J]. Journal of Fluid Mechanics, 2008, 595(1): 141-161. |
26 | Garstecki P, Fuerstman M J, Stone H A, et al. Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up[J]. Lab on a Chip, 2006, 6(3): 437-446. |
27 | Yao C, Dong Z, Zhao Y, et al. The effect of system pressure on gas-liquid slug flow in a microchannel[J]. AIChE Journal, 2014, 60 (3): 1132-1142. |
28 | Dai L, Cai W, Xin F.Numerical study on bubble formation of a gas-liquid flow in a T-junction microchannel[J]. Chemical Engineering and Technology, 2009, 32(12): 1984-1991. |
29 | Fu T, Ma Y, Funfschilling D, et al. Breakup dynamics of slender bubbles in non-newtonian fluids in microfluidic flow-focusing devices[J]. AIChE Journal, 2012, 58(11): 3560-3567. |
30 | Barnes H A. Shear-thickening (“dilatancy”) in suspensions of nonaggregating solid particles dispersed in Newtonian liquids[J]. Journal of Rheology, 1989, 33(2): 329-366. |
31 | Tang C, Liu M Y, Xu Y G. 3-D numerical simulations on flow and mixing behaviors in gas-liquid-solid microchannels[J]. AIChE Journal, 2013, 59(6): 1934-1951. |
32 | van der Graaf S, Nisisako T, Schroёn C G P H, et al. Lattice Boltzmann simulations of droplet formation in a T-shaped microchannel[J]. Langmuir, 2006, 22(9): 4144-4152. |
33 | Xu J H, Li S W, Tan J, et al. Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping[J]. Microfluidics and Nanofluidics, 2008, 5(6): 711-717. |
34 | Chiarello E, Gupta A, Mistura G, et al. Droplet breakup driven by shear thinning solutions in a microfluidic T-junction[J]. Phys. Rev. Fluids, 2017, 2(12): 123602. |
[1] | 王志龙, 杨烨, 赵真真, 田涛, 赵桐, 崔亚辉. 搅拌时间和混合顺序对锂离子电池正极浆料分散特性的影响[J]. 化工学报, 2023, 74(7): 3127-3138. |
[2] | 黄可欣, 李彤, 李桉琦, 林梅. 加装旋转叶轮T型通道流场的模态分解[J]. 化工学报, 2023, 74(7): 2848-2857. |
[3] | 何汉兵, 刘真, 陈勇, 王小锋, 曾婧. 直写成型电极锰氧化物粉末的合成与浆料调控[J]. 化工学报, 2023, 74(5): 2239-2247. |
[4] | 邓璐, 巨晓洁, 张文杰, 谢锐, 汪伟, 刘壮, 潘大伟, 褚良银. 微流控法可控制备放射性壳聚糖栓塞微球[J]. 化工学报, 2023, 74(4): 1781-1794. |
[5] | 贾露凡, 王艺颖, 董钰漫, 李沁园, 谢鑫, 苑昊, 孟涛. 微流控双水相贴壁液滴流动强化酶促反应研究[J]. 化工学报, 2023, 74(3): 1239-1246. |
[6] | 黄心童, 耿宇昊, 刘恒源, 陈卓, 徐建鸿. 微流控制备新型功能纳米粒子研究进展[J]. 化工学报, 2023, 74(1): 355-364. |
[7] | 仇鹏, 韩洋, 许建良, 王辅臣, 代正华. 用于预测气流床煤气化的EDC模型参数研究[J]. 化工学报, 2023, 74(1): 428-437. |
[8] | 李承威, 骆华勇, 张铭轩, 廖鹏, 方茜, 荣宏伟, 王竞茵. 氢氧化镧交联壳聚糖微球的微流控制备及其除磷性能[J]. 化工学报, 2022, 73(9): 3929-3939. |
[9] | 陆遥, 董杰, 孙大为, 谢乐天, 卢家勇, 杜晓宁. 织构PNN-PZT陶瓷的光固化成型制备及其电学性能研究[J]. 化工学报, 2022, 73(8): 3768-3775. |
[10] | 潘大伟, 汪伟, 谢锐, 巨晓洁, 刘壮, 褚良银. 微流控乳液模板法构建功能微颗粒过程中介尺度结构定向调控的研究进展[J]. 化工学报, 2022, 73(6): 2306-2317. |
[11] | 聂璇宇, 陈祯, 朱春英, 付涛涛, 高习群, 马友光. T型微通道内浆料体系中气泡的生成动力学[J]. 化工学报, 2022, 73(1): 204-212. |
[12] | 费滢洁, 朱春英, 付涛涛, 高习群, 马友光. Y型微通道内纳米颗粒稳定气泡的完全阻塞破裂动力学[J]. 化工学报, 2022, 73(1): 213-221. |
[13] | 张皓, 王凯. 基于显微图像识别的微流控液滴聚并研究[J]. 化工学报, 2020, 71(2): 526-534. |
[14] | 刘静, 朱春英, 周灏, 付涛涛, 马友光. 微通道内浆料体系中的气泡生成特性及尺寸预测[J]. 化工学报, 2020, 71(2): 544-551. |
[15] | 刘子炜, 戴诗逸, 段聪, 张志伟, 庞子凡, 朱春英, 付涛涛, 马友光. 台阶式单微通道内气泡生成动力学[J]. 化工学报, 2020, 71(2): 552-565. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||