化工学报 ›› 2020, Vol. 71 ›› Issue (2): 544-551.DOI: 10.11949/0438-1157.20190745
收稿日期:
2019-07-01
修回日期:
2019-11-05
出版日期:
2020-02-05
发布日期:
2020-02-05
通讯作者:
马友光
作者简介:
刘静(1993—),女,硕士研究生,基金资助:
Jing LIU(),Chunying ZHU,Hao ZHOU,Taotao FU,Youguang MA()
Received:
2019-07-01
Revised:
2019-11-05
Online:
2020-02-05
Published:
2020-02-05
Contact:
Youguang MA
摘要:
利用高速摄像仪对T型微通道内浆料体系中的气泡生成频率和气泡尺寸进行了研究。以氮气作为分散相,含0.35%(质量分数)表面活性剂(SDS)不同浓度玻璃珠的甘油-水溶液为连续相。实验考察了弹状流下气液两相流量、颗粒浓度以及浆料表观黏度对气泡生成频率及气泡尺寸的影响。结果表明:在弹状流下,当分散相流量一定时,随着连续相流量的增大,气泡的生成频率增大而气泡尺寸减小。当连续相流量一定时,随着分散相流量的增大,气泡生成频率和气泡尺寸均增大。随着颗粒浓度的增大,浆料的表面张力减小,表观黏度增大,气泡生成频率增大而气泡尺寸减小。提出了T型微通道内浆料体系中生成气泡尺寸的预测模型,模型具有良好的预测精度。
中图分类号:
刘静, 朱春英, 周灏, 付涛涛, 马友光. 微通道内浆料体系中的气泡生成特性及尺寸预测[J]. 化工学报, 2020, 71(2): 544-551.
Jing LIU, Chunying ZHU, Hao ZHOU, Taotao FU, Youguang MA. Bubble formation of slurry system and size prediction in microchannel[J]. CIESC Journal, 2020, 71(2): 544-551.
Slurry (50% gly-water/0.35% SDS) Cs/% | Density, ρ/(kg/m3) | Superficial viscosity, μ/(mPa·s) | Surface tension, σ/(mN/m) |
---|---|---|---|
0 | 1123.2 | 4.41 | 39.66 |
0.4 | 1123.3 | 5.39 | 33.77 |
2 | 1123.5 | 5.78 | 31.27 |
3 | 1123.8 | 5.86 | 31.25 |
5 | 1123.9 | 6.06 | 30.29 |
表1 两相流体的物性数据
Table1 Physical properties of liquid and slurry used in experiment
Slurry (50% gly-water/0.35% SDS) Cs/% | Density, ρ/(kg/m3) | Superficial viscosity, μ/(mPa·s) | Surface tension, σ/(mN/m) |
---|---|---|---|
0 | 1123.2 | 4.41 | 39.66 |
0.4 | 1123.3 | 5.39 | 33.77 |
2 | 1123.5 | 5.78 | 31.27 |
3 | 1123.8 | 5.86 | 31.25 |
5 | 1123.9 | 6.06 | 30.29 |
1 | 陈光文, 袁权. 微化工技术[J]. 化工学报, 2003, 54(4): 427-439. |
Chen G W, Yuan Q. Micro chemical technology[J]. Journal of Chemical Industry and Engineering (China), 2003, 54(4): 427-439. | |
2 | 骆广生, 王凯, 徐建鸿, 等. 微化工系统内多相流动及其传递反应性能研究进展[J]. 化工学报, 2010, 61(7): 1621-1626. |
Luo G S, Wang K, Xu J H, et al. Multiphase flow, transport and reaction in micro-structured chemical systems[J]. CIESC Journal, 2010, 61(7): 1621-1626. | |
3 | 荀涛, 蔡旺锋, 张旭斌. 微通道中气-液-液三相流流型及传质研究[J]. 化学工业与工程, 2017, 34(6): 81-87. |
Xun T, Cai W F, Zhang X B. The flow pattern and mass transfer of gas-liquid-liquid three phase flow in microchannel[J]. Chemical Industry and Engineering, 2017, 34(6): 81-87. | |
4 | Song H, Tice J D, Ismagilov R F. A microfluidic system for controlling reaction networks in time[J]. Angewandte Chemie International Edition, 2003, 42(7): 768-772. |
5 | Laporte M, Montillet A, Della Valle D, et al. Characteristics of foams produced with viscous shear thinning fluids using microchannels at high throughput[J]. Journal of Food Engineering, 2016, 173: 25-33. |
6 | Khan S A, Günther A, Schmidt M A, et al. Microfluidic synthesis of colloidal silica[J]. Langmuir, 2004, 20(20): 8604-8611. |
7 | Zhang Y, Ozdemir P. Microfluidic DNA amplification—a review[J]. Analytica Chimica Acta, 2009, 638(2): 115-125. |
8 | Santos J, Trujillo-Cayado L A, Calero N, et al. Development of eco-friendly emulsions produced by microfluidization technique[J]. Journal of Industrial and Engineering Chemistry, 2016, 36: 90-95. |
9 | 赵绍磊, 王灵宇, 吴送姑. 药物多晶型的研究进展[J]. 化学工业与工程, 2018, 35(3): 12-21. |
Zhao S L, Wang L Y, Wu S G. Progress in the research of pharmaceutical polymorph[J]. Chemical Industry and Engineering, 2018, 35(3): 12-21 | |
10 | Qian D, Lawal A. Numerical study on gas and liquid slugs for Taylor flow in a T-junction microchannel[J]. Chemical Engineering Science, 2006, 61(23): 7609-7625. |
11 | Sobieszuk P, Cygański P, Pohorecki R. Bubble lengths in the gas-liquid Taylor flow in microchannels[J]. Chemical Engineering Research and Design, 2010, 88(3): 263-269. |
12 | Garstecki P, Fuerstman M J, Stone H A, et al. Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up[J]. Lab on a Chip, 2006, 6(3): 437-446. |
13 | Ookawara S, Street D, Ogawa K. Numerical study on development of particle concentration profiles in a curved microchannel[J]. Chemical Engineering Science, 2006, 61(11): 3714-3724. |
14 | Ai Y, Park S, Zhu J, et al. DC electrokinetic particle transport in an L-shaped microchannel[J]. Langmuir, 2010, 26(4): 2937-2944. |
15 | Khashan S A, Furlani E P. Effects of particle-fluid coupling on particle transport and capture in a magnetophoretic microsystem[J]. Microfluidics and Nanofluidics, 2012, 12(1): 565-580. |
16 | Luo G, Du L, Wang Y, et al. Controllable preparation of particles with microfluidics[J]. Particuology, 2011, 9(6): 545-558. |
17 | Wang K, Wang Y J, Chen G G, et al. Enhancement of mixing and mass transfer performance with a microstructure minireactor for controllable preparation of CaCO3 nanoparticles[J]. Industrial & Engineering Chemistry Research, 2007, 46(19): 6092-6098. |
18 | Ufer A, Sudhoff D, Mescher A, et al. Suspension catalysis in a liquid-liquid capillary microreactor[J]. Chemical Engineering Journal, 2011, 167(2): 468-474. |
19 | 谢灵丹. 微通道内微细颗粒对气液传质的影响研究[D]. 天津: 天津大学, 2010. |
Xie L D. Effect of fine particle on the gas-liquid mass transfer in the microchannel[D]. Tianjin: Tianjin University, 2010. | |
20 | Pu X, Su Y. Heterogeneous catalysis in microreactors with nanofluids for fine chemicals syntheses: benzylation of toluene with benzyl chloride over silica-immobilized FeCl3 catalyst[J]. Chemical Engineering Science, 2018, 184: 200-208. |
21 | Pu X, Zhang B, Su Y. Heterogeneous photocatalysis in microreactors for efficient reduction of nitrobenzene to aniline: mechanisms and energy efficiency[J]. Chemical Engineering & Technology, 2019, 42(10): 1-9. |
22 | Chen R, Feng H, Zhu X, et al. Interaction of the Taylor flow behaviors and catalytic reaction inside a gas-liquid-solid microreactor under long-term operation[J]. Chemical Engineering Science, 2018, 175: 175-184. |
23 | Bashir S, Solvas X C, Bashir M, et al. Dynamic wetting in microfluidic droplet formation[J]. BioChip Journal, 2014, 8(2): 122-128. |
24 | Riaud A, Zhang H, Wang X, et al. Numerical study of surfactant dynamics during emulsification in a T-junction microchannel[J]. Langmuir, 2018, 34(17): 4980-4990. |
25 | Tsuchiya K, Furumoto A, Fan L S, et al. Suspension viscosity and bubble rise velocity in liquid-solid fluidized beds[J]. Chemical Engineering Science, 1997, 52(18): 3053-3066. |
26 | Yang G Q, Du B, Fan L S. Bubble formation and dynamics in gas-liquid-solid fluidization—a review[J]. Chemical Engineering Science, 2007, 62(1/2): 2-27. |
27 | Dayan A, Zalmanovich S. Axial dispersion and enterainment of particles in wakes of bubbles[J]. Chemical Engineering Science, 1982, 37(8): 1253-1257. |
28 | Garstecki P, Stone H A, Whitesides G M. Mechanism for flow-rate controlled breakup in confined geometries: a route to monodisperse emulsions[J]. Physical Review Letters, 2005, 94(16): 164501. |
29 | Fu T, Ma Y, Funfschilling D, et al. Bubble formation and breakup mechanism in a microfluidic flow-focusing device[J]. Chemical Engineering Science, 2009, 64(10): 2392-2400. |
30 | Christopher G F, Noharuddin N N, Taylor J A, et al. Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions[J]. Physical Review E, 2008, 78(3): 036317. |
31 | Xu J H, Li S W, Tan J, et al. Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping[J]. Microfluidics and Nanofluidics, 2008, 5(6): 711-717. |
32 | Fu T, Ma Y, Funfschilling D, et al. Squeezing-to-dripping transition for bubble formation in a microfluidic T-junction[J]. Chemical Engineering Science, 2010, 65(12): 3739-3748. |
33 | Nisisako T, Torii T, Higuchi T. Droplet formation in a microchannel network[J]. Lab on a Chip, 2002, 2(1): 24-26. |
34 | Xu J H, Luo G S, Chen G G, et al. Experimental and theoretical approaches on droplet formation from a micrometer screen hole[J]. Journal of Membrane Science, 2005, 266(1/2): 121-131. |
[1] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[2] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[3] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[4] | 袁佳琦, 刘政, 黄锐, 张乐福, 贺登辉. 泡状入流条件下旋流泵能量转换特性研究[J]. 化工学报, 2023, 74(9): 3807-3820. |
[5] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[6] | 岳林静, 廖艺涵, 薛源, 李雪洁, 李玉星, 刘翠伟. 凹坑缺陷对厚孔板喉部空化流动特性影响研究[J]. 化工学报, 2023, 74(8): 3292-3308. |
[7] | 张孟斌, 李锐, 张嘉杰, 马素霞, 张建胜. 基于共面电容原理的煤炭灰渣介电特性实验研究[J]. 化工学报, 2023, 74(7): 3028-3037. |
[8] | 王海, 林宏, 王晨, 许浩洁, 左磊, 王军锋. 高压静电场强化多孔介质表面沸腾传热特性研究[J]. 化工学报, 2023, 74(7): 2869-2879. |
[9] | 王志龙, 杨烨, 赵真真, 田涛, 赵桐, 崔亚辉. 搅拌时间和混合顺序对锂离子电池正极浆料分散特性的影响[J]. 化工学报, 2023, 74(7): 3127-3138. |
[10] | 刘远超, 蒋旭浩, 邵钶, 徐一帆, 钟建斌, 李耑. 几何尺寸及缺陷对石墨炔纳米带热输运特性的影响[J]. 化工学报, 2023, 74(6): 2708-2716. |
[11] | 王泽栋, 石至平, 刘丽艳. 考虑气泡非均匀耗散的矩形反应器声流场数值模拟及结构优化[J]. 化工学报, 2023, 74(5): 1965-1973. |
[12] | 何汉兵, 刘真, 陈勇, 王小锋, 曾婧. 直写成型电极锰氧化物粉末的合成与浆料调控[J]. 化工学报, 2023, 74(5): 2239-2247. |
[13] | 张银宁, 王进卿, 冯致, 詹明秀, 徐旭, 张光学, 池作和. 升温条件下多孔介质内气泡的生长和聚并行为[J]. 化工学报, 2023, 74(4): 1509-1518. |
[14] | 贾露凡, 王艺颖, 董钰漫, 李沁园, 谢鑫, 苑昊, 孟涛. 微流控双水相贴壁液滴流动强化酶促反应研究[J]. 化工学报, 2023, 74(3): 1239-1246. |
[15] | 张雪婷, 胡激江, 赵晶, 李伯耿. 高分子量聚丙二醇在微通道反应器中的制备[J]. 化工学报, 2023, 74(3): 1343-1351. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||