化工学报 ›› 2021, Vol. 72 ›› Issue (5): 2817-2825.DOI: 10.11949/0438-1157.20201305
收稿日期:
2020-09-11
修回日期:
2020-12-17
出版日期:
2021-05-05
发布日期:
2021-05-05
通讯作者:
刘建允
作者简介:
蒋雯雯(1996—),女,硕士研究生,基金资助:
JIANG Wenwen(),NIE Pengfei,HU Bin,LI Jingjing,LIU Jianyun()
Received:
2020-09-11
Revised:
2020-12-17
Online:
2021-05-05
Published:
2021-05-05
Contact:
LIU Jianyun
摘要:
氟是人类生命活动必需的微量元素之一,但人体摄入过多的氟元素会引发氟斑牙、骨骼变形等氟中毒现象。本文以活性炭 (AC) 为载体,在多孔Al2O3纳米分散液中采用简单超声处理,得到Al2O3/AC复合材料。场发射扫描电镜证明Al2O3成功负载在AC表面,5% Al2O3在AC表面分布均匀。N2吸-脱附测试结果表明Al2O3/AC复合材料的比表面积比AC有明显增加。循环伏安、恒流充放电及电化学阻抗测试结果表明Al2O3的掺杂可以改善AC的离子导电性,提高比电容;5% Al2O3/AC导电性最佳,比电容最高,在7 mmol·L-1 NaF溶液中为92 F·g-1,是AC比电容 (62 F·g-1) 的1.5倍。以Al2O3/AC为正极的电容去离子 (CDI) 脱氟测试,结果表明5% Al2O3/AC电极脱氟量最大,达234 μmol·g-1,远高于纯AC的脱氟量 (115 μmol·g-1)。此外,5% Al2O3/AC电极对F-的选择性吸附性能良好,在含F-、Cl-和SO42-的模拟高氟地下水中采用5% Al2O3/AC电极对应的三组CDI池串联,可脱除80%的F-、25%的Cl-和56%的SO42-,同时经过十次F-吸脱附循环后,氟去除率仍可保持81%,证明5% Al2O3/AC电极对F-具有良好的选择吸附性和循环稳定性。该电极材料制备简单,脱氟选择性好,在CDI过程中有望用于高氟地区地下水的净化脱氟。
中图分类号:
蒋雯雯, 聂鹏飞, 胡彬, 李菁菁, 刘建允. Al2O3/AC正极选择性电容吸附水中氟离子[J]. 化工学报, 2021, 72(5): 2817-2825.
JIANG Wenwen, NIE Pengfei, HU Bin, LI Jingjing, LIU Jianyun. Selective capacitive adsorption of fluoride ions with Al2O3/AC anode[J]. CIESC Journal, 2021, 72(5): 2817-2825.
图1 AC (a), 3% Al2O3/AC (b), 5% Al2O3/AC (c)和 7% Al2O3/AC (d)的FESEM图
Fig.1 FESEM images of AC (a), 3% Al2O3/AC (b), 5% Al2O3/AC (c) and 7% Al2O3/AC (d)
样品 | 比表面积/ (m2·g-1) | 总孔孔容/ (cm3·g-1) | 微孔孔容/ (cm3·g-1) | 平均孔径/nm |
---|---|---|---|---|
AC | 1189 | 0.558 | 0.443 | 1.87 |
5% Al2O3/AC | 1938 | 0.864 | 0.564 | 0.82 |
表1 样品的孔隙率参数
Table 1 The porosity parameters of various samples
样品 | 比表面积/ (m2·g-1) | 总孔孔容/ (cm3·g-1) | 微孔孔容/ (cm3·g-1) | 平均孔径/nm |
---|---|---|---|---|
AC | 1189 | 0.558 | 0.443 | 1.87 |
5% Al2O3/AC | 1938 | 0.864 | 0.564 | 0.82 |
图3 AC, 3% Al2O3/AC, 5% Al2O3/AC和7% Al2O3/AC电极的CV曲线(a);电极在不同扫速下对应的比电容值曲线(b); 不同电极的GCD曲线 (c); 不同电极的EIS曲线(d)(电解液:7 mmol·L-1 NaF溶液)
Fig.3 The CV curves of AC, 3% Al2O3/AC, 5% Al2O3/AC and 7% Al2O3/AC electrodes (a); The specific capacitance of electrodes at various scan rates (b); The GCD curves of different electrodes (c); EIS curves of the different electrodes (d)(Electrolyte: 7 mmol·L-1 NaF solution)
图4 3% Al2O3/AC‖AC、5% Al2O3/AC‖AC、7% Al2O3/AC‖AC和 AC‖AC电容器中NaF浓度随时间变化曲线及对应的电压曲线(a);不同电极的脱氟量(b)
Fig.4 The curves of NaF concentration vs. time and the corresponding voltage vs. time of 3% Al2O3/AC‖AC, 5% Al2O3/AC‖AC, 7% Al2O3/AC‖AC, AC‖AC capacitors (a); Defluorination of different electrodes (b)
图6 不同F-/Cl-浓度比对应的选择性系数α值(a);不同F-/SO42-浓度比对应的选择性系数α值(b)
Fig.6 The selectivity α values corresponding to different F-/Cl- concentration ratio (a); The selectivity α values corresponding to different F-/SO42- concentration ratio (b)
图7 模拟地下水中不同阴离子的去除率(a);多次循环的脱氟量保持率(b)
Fig.7 Removal rates of different anions in simulated groundwater (a); Retention of F- removal in multiple cycles (b)
1 | Khatibikamal V, Torabian A, Janpoor F, et al. Fluoride removal from industrial wastewater using electrocoagulation and its adsorption kinetics [J]. Journal of Hazardous Materials, 2010, 179(1/2/3): 276-280. |
2 | Habuda-Stanic M, Ravancic M E, Flanagan A. A review on adsorption of fluoride from aqueous solution [J]. Materials, 2014, 7(9): 6317-6366. |
3 | Bhatnagar A, Kumar E, Sillanpaa M. Fluoride removal from water by adsorption—a review [J]. Chemical Engineering Journal, 2011, 171(3): 811-840. |
4 | Dessalegne M, Zewge F, Pfenninger N, et al. Layered double hydroxide and its calcined product for fluoride removal from groundwater of Ethiopian rift valley [J]. Water, Air, and Soil Pollution, 2016, 227(10): 1-13. |
5 | Paudyal H, Pangeni B, Inoue K, et al. Preparation of novel alginate based anion exchanger from Ulva japonica and its application for the removal of trace concentrations of fluoride from water [J]. Bioresource Technology, 2013, 148(148): 221-227. |
6 | 李莉, 王业耀, 孟凡生. 含氟地下水饮用处理技术 [J]. 地下水, 2007, 29(5): 85-86. |
Li L, Wang Y Y, Meng F S. Removal of fluoride in ground water for drinking [J]. Ground Water, 2007, 29(5): 85-86. | |
7 | Bonyadi Z, Kumar P S, Foroutan R, et al. Ultrasonic-assisted synthesis of Populus alba activated carbon for water defluorination: application for real wastewater [J]. The Korean Journal of Chemical Engineering, 2019, 36(10): 1595-1603. |
8 | Alencherry T, Naveen A R, Ghosh S, et al. Effect of increasing electrical conductivity and hydrophilicity on the electrosorption capacity of activated carbon electrodes for capacitive deionization [J]. Desalination, 2017, 415:14-19. |
9 | Xie Z Z, Shang X H, Xu K B, et al. Facile synthesis of in situ graphitic-N doped porous carbon derived from ginkgo leaf for fast capacitive deionization [J]. Journal of the Electrochemical Society, 2019, 166(8): E240-E247. |
10 | 赵飞, 苑志华, 钟鹭斌, 等. 电容去离子技术及其电极材料研究进展 [J]. 水处理技术, 2016, 42(5): 38-44. |
Zhao F, Yuan Z H, Zhong L B, et al. Review on electrode materials and capacitive deionization (CDI) technology for desalination [J]. Technology of Water Treatment, 2016, 42(5): 38-44. | |
11 | Bai Z Y, Hu C Z, Liu H J, et al. Selective adsorption of fluoride from drinking water using NiAl-layered metal oxide film electrode [J]. Journal of Colloid and Interface Science, 2019, 539:146-151. |
12 | Oren Y. Capacitive deionization (CDI) for desalination and water treatment — past, present and future (a review) [J]. Desalination, 2008, 228(1/2/3): 10-29. |
13 | Zhang R, Gu X, Liu Y, et al. Hydrophilic nano-porous carbon derived from egg whites for highly efficient capacitive deionization [J]. Applied Surface Science, 2020, 512:145740. |
14 | 吴阳春, 应迪文, 王亚林, 等. 电容脱盐技术及其在废水处理中的应用 [J]. 水处理技术, 2019, 45(8): 1-6. |
Wu Y C, Ying D W, Wang Y L, et al. Capacitive desalination technology and its application in wastewater treatment [J]. Technology of Water Treatment, 2019, 45(8): 1-6. | |
15 | 刘宋文. 活性炭负载活性氧化铝复合除氟材料的制备及其除氟性能的研究 [D]. 武汉: 武汉理工大学, 2014. |
Liu S W. Preparation of activated carbon supported activated alumina composite adsorbent and its defluoridation properties [D]. Wuhan: WuhanUniversity of Technology, 2014. | |
16 | Li D, Wang S, Wang G, et al. Facile fabrication of NiCoAl-layered metal oxide/graphene nanosheets for efficient capacitive deionization defluorination [J]. ACS Applied Materials and Interfaces, 2019, 11(34): 31200-31209. |
17 | Camacho L M, Torres A, Saha D, et al. Adsorption equilibrium and kinetics of fluoride on sol-gel-derived activated alumina adsorbents [J]. Journal of Colloid and Interface Science, 2010, 349(1): 307-313. |
18 | 马福臻, 周少奇, 刘泽珺, 等. 三维网状HZO@SGH对水中氟离子的吸附作用和机制 [J]. 环境科学, 2018, (2): 828-837. |
Ma F Z, Zhou S Q, Liu Z J, et al. Adsorption performance and mechanism of HZO@SGH for the removal of fluoride from aqueous solution [J]. Environmental Science, 2018, (2): 828-837. | |
19 | 马家骧, 吴作舟, 关惠兰. 饮用水脱氟方法的研究——高吸附容量活性氧化铝法 [J]. 中国公共卫生, 1986, (2): 46-48. |
Ma J X, Wu Z Z, Guan H L. Study on defluorination of drinking water -- high adsorption capacity activated alumina process [J]. Chinese Journal of Public Health, 1986, (2): 46-48. | |
20 | Lin J Y, Chen Y L, Hong X Y, et al. The role of fluoroaluminate complexes on the adsorption of fluoride onto hydrous alumina in aqueous solutions [J]. Journal of Colloid and Interface Science, 2020, 561: 275-286. |
21 | Xie Z Z, Shang X H, Yang J M, et al. 3D interconnected boron- and nitrogen-codoped carbon nanosheets decorated with manganese oxides for high-performance capacitive deionization [J]. Carbon, 2020, 158: 184-192. |
22 | 马越. 改性活性炭/纳米羟基氧化铝对水中氟离子的去除研究 [D]. 济南: 山东大学, 2009. |
Ma Y. Study of fluoride ion removal using modified activated carbon / nano-scale alumina oxide hydroxide [D]. Jinan: Shandong University, 2009. | |
23 | 潘杰峰, 郑瑜, 丁金成, 等. 膜法电容去离子技术用于水溶液中单/多价阴离子的分离 [J]. 化工学报, 2018, 69(8): 3502-3508. |
Pan J F, Zheng Y, Ding J C, et al. Monovalent anions removal by capacitive deionization integrated with monovalent anion permselective exchange membrane [J]. CIESC Journal, 2018, 69(8): 3502-3508. | |
24 | 陈学刚, 宋怀河, 陈晓红, 等. 萘和二茂铁共炭化制备纳米Fe/C材料的研究 [J]. 新型炭材料, 2000, 15(4): 5-8. |
Chen X G, Song H H, Chen X H, et al. Preparation of nano-iron/carbon material from naphthalene and ferrocene [J]. New Carbon Materials, 2000, 15(4): 5-8. | |
25 | Rouquerol J, Avnir D, Fairbridge C W, et al. Recommendations for the characterization of porous solids [J]. Pure and Applied Chemistry, 1994, 66(8): 1739-1758. |
26 | Tang J, Salunkhe R R, Liu J, et al. Thermal conversion of core-shell metal-organic frameworks: a new method for selectively functionalized nanoporous hybrid carbon [J]. Journal of the American Chemical Society, 2015, 137(4): 1572-1580. |
27 | Elisadiki J, Jande Y A C, Kibona T E, et al. Highly porous biomass-based capacitive deionization electrodes for water defluoridation [J]. Ionics, 2020, 26(5): 2477-2492. |
28 | Cui B B, Hu B, Liu J M, et al. Solution-plasma-assisted bimetallic oxide alloy nanoparticles of Pt and Pd embedded within two-dimensional Ti3C2Tx nanosheets as highly active electrocatalysts for overall water splitting [J]. ACS Applied Materials and Interfaces, 2018, 10(28): 23858-23873. |
29 | 高利军, 白思林, 梁苏岑, 等. ZIF衍生多孔碳纳米纤维用于高效电容去离子的研究 [J]. 化工学报, 2020, 71(6): 2760-2767. |
Gao L J, Bai S L, Liang S C, et al. ZIF-derived porous carbon nanofibers for high-efficiency capacitive deionization[J]. CIESC Journal, 2020, 71(6): 2760-2767. | |
30 | Xu B, Xu X, Gao H, et al. Electro-enhanced adsorption of ammonium ions by effective graphene-based electrode in capacitive deionization [J]. Separation and Purification Technology, 2020, 250:117243. |
31 | Liu J Y, Xiong Z B, Wang S P, et al. Structure and electrochemistry comparison of electrospun porous carbon nanofibers for capacitive deionization [J]. Electrochimica Acta, 2016, 210: 171-180. |
32 | 徐向宇, 廖艳清, 孙建川, 等. 活性氧化铝及其再生氧化铝对水中氟离子的吸附 [J]. 物理化学学报, 2019, 35(3): 317-326. |
Xu X Y, Liao Y Q, Sun J C, et al. Removal of fluorides from aqueous solutions using fresh and regenerated activated alumina [J]. Acta Physico-Chimica Sinica, 2019, 35(3): 317-326. | |
33 | Nie P F, Cai W S, Xie Z Z, et al. Inversion phenomenon and effective charging quantity in capacitive deionization device [J]. Ionics, 2020, 26(7): 3523-3529. |
34 | 王刚, 张云启, 汪仕勇, 等. 共价交联法制备具有优异电容去离子脱盐性能的硼碳氮纳米片/石墨烯复合电极 [J]. 新型炭材料, 2020, 35(4): 384-393. |
Wang G, Zhang Y Q, Wang S Y, et al. Boron-nitride-carbon nanosheet/graphene composites generated by covalent cross-linking which have an excellent capacitive deionization performance [J]. New Carbon Materials, 2020, 35(4): 384-393. | |
35 | 张璋. 活性炭基电容除盐装置去除水中氟离子的性能与机理研究 [D]. 北京: 北京交通大学, 2019. |
Zhang Z. Study on performance and mechanism of fluoride removal from water by activated carbon based capacitive desalination [D]. Beijing: Beijing Jiaotong University, 2019. | |
36 | 乌丽罕. 衡水地区高氟地下水化学特征及其成因 [D]. 北京: 中国地质大学, 2015. |
Wu L H. Characteristics and genesis of high-fluoride groundwater in Hengshui City, the North China plain [D]. Beijing: ChinaUniversity of Geosciences, 2015. | |
37 | 李聪. 稻壳基活性炭脱氟剂的动态吸附性能研究 [D]. 武汉: 华中科技大学, 2015. |
Li C. Research on the adsorption property of the rice husk activated carbon as defluorination agent [D]. Wuhan: Huazhong University of Science and Technology, 2015. |
[1] | 连梦雅, 谈莹莹, 王林, 陈枫, 曹艺飞. 地下水预热新风一体化热泵空调系统制热性能研究[J]. 化工学报, 2023, 74(S1): 311-319. |
[2] | 吕龙义, 及文博, 韩沐达, 李伟光, 高文芳, 刘晓阳, 孙丽, 王鹏飞, 任芝军, 张光明. 铁基导电材料强化厌氧去除卤代有机污染物:研究进展及未来展望[J]. 化工学报, 2023, 74(8): 3193-3202. |
[3] | 屈园浩, 邓文义, 谢晓丹, 苏亚欣. 活性炭/石墨辅助污泥电渗脱水研究[J]. 化工学报, 2023, 74(7): 3038-3050. |
[4] | 黄陆月, 刘畅, 许勇毅, 邢浩若, 王峰, 马双忱. CDI二维浓度传质模型的建立以及实验验证[J]. 化工学报, 2022, 73(7): 2933-2943. |
[5] | 王刚, 车小平, 汪仕勇, 邱介山. 水溶性带电聚合物黏结剂修饰炭电极用于增强电容去离子性能[J]. 化工学报, 2022, 73(4): 1763-1771. |
[6] | 王祺, 房阔, 贺聪慧, 王凯军. 流动电极电容去离子技术综述:研究进展与未来挑战[J]. 化工学报, 2022, 73(3): 975-989. |
[7] | 刘立, 蒋鹏, 王伟, 张同桓, 穆立文, 陆小华, 朱家华. 基于过程模拟和随机森林模型的生物质制氢过程因素分析与预测[J]. 化工学报, 2022, 73(11): 5230-5239. |
[8] | 张超, 陈健, 殷文华, 沈圆辉, 钮朝阳, 余秀鑫, 张东辉, 唐忠利. 变压吸附氢气纯化过程瞬态分析[J]. 化工学报, 2022, 73(1): 308-321. |
[9] | 演康, 杨颂, 刘守军, 杨超, 樊惠玲, 上官炬. 低阶煤原位制备ZnO基活性炭脱硫剂[J]. 化工学报, 2021, 72(9): 4921-4930. |
[10] | 王晶, 韩巧宁, 雷以廷, 唐曼, 陈丽红, 车俊达, 刘祖广. 一步法制备富氧木质素活性炭及其亚甲基蓝吸附性能[J]. 化工学报, 2021, 72(5): 2826-2836. |
[11] | 李晓宇, 徐宏阳, 代敏, 蔡姗姗. 热弥散对地埋管换热器全尺度传热的影响[J]. 化工学报, 2021, 72(5): 2547-2559. |
[12] | 焦帅, 杨磊, 武婷婷, 李宏强, 吕辉鸿, 何孝军. 混合盐模板法制备超级电容器用氮掺杂分级多孔碳纳米片[J]. 化工学报, 2021, 72(5): 2869-2877. |
[13] | 冶雪艳, 李铮, 罗冉, 宋亚霖, 崔瑞娟. 地下水人工补给过程中流速对多孔介质胶体堵塞的影响机理[J]. 化工学报, 2021, 72(11): 5520-5532. |
[14] | 张正义,张千,楼紫阳,刘伟,朱宇楠,袁春波,于潇,赵天涛. 催化臭氧氧化处理渗滤液RO浓液的氧化特性及光谱分析[J]. 化工学报, 2021, 72(10): 5362-5371. |
[15] | 苏银海,张书平,刘凌沁,熊源泉. 活性炭催化热解纤维素协同制备酚类和合成气[J]. 化工学报, 2021, 72(10): 5206-5217. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||