化工学报 ›› 2022, Vol. 73 ›› Issue (4): 1763-1771.DOI: 10.11949/0438-1157.20211793
收稿日期:
2021-12-20
修回日期:
2022-01-26
出版日期:
2022-04-05
发布日期:
2022-04-25
通讯作者:
邱介山
作者简介:
王刚(1979—),男,博士,教授,基金资助:
Gang WANG1,2(),Xiaoping CHE2,Shiyong WANG1,Jieshan QIU2(
)
Received:
2021-12-20
Revised:
2022-01-26
Online:
2022-04-05
Published:
2022-04-25
Contact:
Jieshan QIU
摘要:
电容去离子技术(capacitive deionization,CDI)是一种基于电吸附原理的新型脱盐技术,具有成本低、无污染、能耗小等优点。采用亲水性的羧甲基纤维素钠(CMC)和聚乙烯醇(PVA)黏结剂及其化学修饰得到的具有更多带电基团的磺化羧甲基纤维素(SCMC)和季铵化聚乙烯醇(QPVA)黏结剂制备活性炭电极,能进一步增强活性炭(AC)电极的亲水性和离子选择性。亲水性带电聚合物黏结剂依靠自身的电荷可以有效抑制阳极氧化的副反应,并增强离子吸附驱动力。在500 mg/L NaCl盐溶液,1.2/0 V电压下,AC-CMC//AC-PVA和AC-SCMC//AC-QPVA可分别获得14.58和17.39 mg/g的脱盐量,且在0.8/0 V电压下循环100圈之后,脱盐量的保持率分别为65.48%和80.53%。
中图分类号:
王刚, 车小平, 汪仕勇, 邱介山. 水溶性带电聚合物黏结剂修饰炭电极用于增强电容去离子性能[J]. 化工学报, 2022, 73(4): 1763-1771.
Gang WANG, Xiaoping CHE, Shiyong WANG, Jieshan QIU. Carbon electrodes modified with water-soluble charged polymer binder for enhanced capacitive deionization performance[J]. CIESC Journal, 2022, 73(4): 1763-1771.
图4 PVA和QPVA的红外光谱图(a); CMC和SCMC的红外光谱图(b); PVA、QPVA、CMC和SCMC的Zeta电位(c)
Fig.4 FTIR spectra of PVA and QPVA (a); FTIR spectra of CMC and SCMC (b); Zeta potential of PVA, QPVA, CMC, and SCMC (c)
图5 不同电压下AC-P//AC-P、AC-P//AC-C、AC-QP//AC-SC和AC-P//AC-P-M的电导率变化(a)和电流变化曲线(b);1.2 V电压下AC-P//AC-P、AC-P//AC-C、AC-QP//AC-SC和AC-P//AC-P-M的吸附线(c)和电流曲线(d)
Fig.5 The conductivity changes (a) and current density changes (b) of AC-P//AC-P, AC-P//AC-C, AC-QP//AC-SC and AC-P//AC-P-M at different cell voltages; The conductivity changes (c) and current density changes (d) of AC-P//AC-P, AC-P//AC-C, AC-QP//AC-SC and AC-P//AC-P-M under 1.2 V
图6 初始NaCl浓度为500 mg/L时AC-P//AC-P、AC-P//AC-C、AC-QP//AC-SC和AC-P//AC-P-M在不同电压下的脱盐量(a)、电荷转移(b)、吸附速率曲线(c)和Ragone曲线(d)
Fig.6 SAC (a), charge passed (b), adsorption rate curves (c) and Ragone curves (d) of AC-P//AC-P, AC-P//AC-C, AC-QP//AC-SC, and AC-P//AC-P-M in NaCl solution with an initial concentration of 500 mg/L at different cell voltages
图7 0.8/0 V的操作电压下AC-P//AC-P(a)、AC-P//AC-C(b)、AC-QP//AC-SC(c)和AC-P//AC-P-M(d)第1圈和第100圈循环的吸附曲线
Fig.7 Adsorption curves at the 1st and 100 th cycles of AC-P//AC-P (a), AC-P//AC-C (b), AC-QP//AC-SC (c), and AC-P//AC-P-M (d) under 0.8/0 V
图8 0.8/0 V的操作电压下,AC-P//AC-P、AC-P//AC-C、AC-QP//AC-SC和AC-P//AC-P-M的SAC(a)、电荷效率(b)和能耗(c)
Fig.8 The SAC (a), charge efficiency (b) and energy consumption (c) of AC-P//AC-P, AC-P//AC-C, AC-QP//AC-SC and AC-P//AC-P-M at 0.8/0 V
1 | Ou R, Zhang H, Truong V X, et al. A sunlight-responsive metal–organic framework system for sustainable water desalination [J]. Nature Sustainability, 2020, 3(12): 1052-1058. |
2 | Gamaethiralalage J G, Singh K, Sahin S, et al. Recent advances in ion selectivity with capacitive deionization[J]. Energy & Environmental Science, 2021, 14(3): 1095-1120. |
3 | Liu Y, Wang K, Xu X T, et al. Recent advances in faradic electrochemical deionization: system architectures versus electrode materials[J]. ACS Nano, 2021, 15(9): 13924-13942. |
4 | Li Q, Zheng Y, Xiao D J, et al. Faradaic electrodes open a new era for capacitive deionization[J]. Advanced Science, 2020, 7(22): 2002213. |
5 | Nam D H, Lumley M A, Choi K S. Electrochemical redox cells capable of desalination and energy storage: addressing challenges of the water-energy nexus[J]. ACS Energy Letters, 2021, 6(3): 1034-1044. |
6 | Zhang P H, Li J H, Chan-Park M B. Hierarchical porous carbon for high-performance capacitive desalination of brackish water[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(25): 9291-9300. |
7 | Liu M Q, Xu M, Xue Y F, et al. Efficient capacitive deionization using natural basswood-derived, freestanding, hierarchically porous carbon electrodes[J]. ACS Applied Materials & Interfaces, 2018, 10(37): 31260-31270. |
8 | 王刚, 张云启, 汪仕勇, 等. 共价交联法制备具有优异电容去离子脱盐性能的硼碳氮纳米片/石墨烯复合电极[J]. 新型炭材料, 2020, 35(4): 384-393. |
Wang G, Zhang Y Q, Wang S Y, et al. Boron-nitride-carbon nanosheet/graphene composites generated by covalent cross-linking which have an excellent capacitive deionization performance[J]. New Carbon Materials, 2020, 35(4): 384-393. | |
9 | Kalfa A, Shapira B, Shopin A, et al. Capacitive deionization for wastewater treatment: opportunities and challenges[J]. Chemosphere, 2020, 241: 125003. |
10 | Gong X Y, Luo W X, Guo N N, et al. Carbon nanofiber@ZIF-8 derived carbon nanosheet composites with a core–shell structure boosting capacitive deionization performance[J]. Journal of Materials Chemistry A, 2021, 9(34): 18604-18613. |
11 | Liu X H, Zhang S H, Feng G L, et al. Core-shell MOF@COF motif hybridization: selectively functionalized precursors for titanium dioxide nanoparticle-embedded nitrogen-rich carbon architectures with superior capacitive deionization performance[J]. Chemistry of Materials, 2021, 33(5): 1657-1666. |
12 | Jung Y, Yang Y, Kim T, et al. Enhanced electrochemical stability of a zwitterionic-polymer-functionalized electrode for capacitive deionization[J]. ACS Applied Materials & Interfaces, 2018, 10(7): 6207-6217. |
13 | Huo S L, Ni W, Zhao Y F, et al. Highly efficient atomically dispersed Co–N active sites in porous carbon for high-performance capacitive desalination of brackish water[J]. Journal of Materials Chemistry A, 2021, 9(5): 3066-3076. |
14 | Zhang J, Yan T T, Fang J H, et al. Enhanced capacitive deionization of saline water using N-doped rod-like porous carbon derived from dual-ligand metal–organic frameworks[J]. Environmental Science: Nano, 2020, 7(3): 926-937. |
15 | Ntakirutimana S, Tan W. Electrochemical capacitive behaviors of carbon/titania composite prepared by Tween 80-assisted sol-gel process for capacitive deionization[J]. Desalination, 2021, 512: 115131. |
16 | Peng W J, Wang W, Han G H, et al. Fabrication of 3D flower-like MoS2/graphene composite as high-performance electrode for capacitive deionization[J]. Desalination, 2020, 473: 114191. |
17 | Huo S L, Song X, Zhao Y B, et al. Insight into the significant contribution of intrinsic carbon defects for the high-performance capacitive desalination of brackish water[J]. Journal of Materials Chemistry A, 2020, 8(38): 19927-19937. |
18 | Kim M, Cerro M D, Hand S, et al. Enhancing capacitive deionization performance with charged structural polysaccharide electrode binders[J]. Water Research, 2019, 148: 388-397. |
19 | Xie J Z, Xue Y F, He M, et al. Organic-inorganic hybrid binder enhances capacitive deionization performance of activated-carbon electrode[J]. Carbon, 2017, 123: 574-582. |
20 | Weng J Z, Wang S Y, Wang G, et al. Carbon electrode with cross-linked and charged chitosan binder for enhanced capacitive deionization performance[J]. Desalination, 2021, 505: 114979. |
21 | Choi J Y, Choi J H. A carbon electrode fabricated using a poly(vinylidene fluoride) binder controlled the Faradaic reaction of carbon powder[J]. Journal of Industrial and Engineering Chemistry, 2010, 16(3): 401-405. |
22 | Asquith B M, Meier-Haack J, Ladewig B P. Poly(arylene ether sulfone) copolymers as binders for capacitive deionization activated carbon electrodes[J]. Chemical Engineering Research and Design, 2015, 104: 81-91. |
23 | Chai L L, Qu Q T, Zhang L F, et al. Chitosan, a new and environmental benign electrode binder for use with graphite anode in lithium-ion batteries[J]. Electrochimica Acta, 2013, 105: 378-383. |
24 | Yu T H, Shiu H Y, Lee M S, et al. Life cycle assessment of environmental impacts and energy demand for capacitive deionization technology[J]. Desalination, 2016, 399: 53-60. |
25 | Cao P F, Yang G, Li B R, et al. Rational design of a multifunctional binder for high-capacity silicon-based anodes[J]. ACS Energy Letters, 2019, 4(5): 1171-1180. |
26 | Chen C, Lee S H, Cho M, et al. Cross-linked chitosan as an efficient binder for Si anode of Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(4): 2658-2665. |
27 | Byles B W, Cullen D A, More K L, et al. Tunnel structured manganese oxide nanowires as redox active electrodes for hybrid capacitive deionization[J]. Nano Energy, 2018, 44: 476-488. |
28 | Xing W L, Liang J, Tang W W, et al. Versatile applications of capacitive deionization (CDI)-based technologies[J]. Desalination, 2020, 482: 114390. |
29 | Wang S Y, Wang G, Wu T T, et al. Membrane-free hybrid capacitive deionization system based on redox reaction for high-efficiency NaCl removal[J]. Environmental Science & Technology, 2019, 53(11): 6292-6301. |
30 | Ahualli S, Iglesias G R, Fernández M M, et al. Use of soft electrodes in capacitive deionization of solutions[J]. Environmental Science & Technology, 2017, 51(9): 5326-5333. |
31 | Kim Y J, Choi J H. Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion-exchange polymer[J]. Water Research, 2010, 44(3): 990-996. |
32 | Kim Y J, Choi J H. Enhanced desalination efficiency in capacitive deionization with an ion-selective membrane[J]. Separation and Purification Technology, 2010, 71(1): 70-75. |
33 | Lee J Y, Seo S J, Yun S H, et al. Preparation of ion exchanger layered electrodes for advanced membrane capacitive deionization (MCDI)[J]. Water Research, 2011, 45(17): 5375-5380. |
34 | Park B H, Kim Y J, Park J S, et al. Capacitive deionization using a carbon electrode prepared with water-soluble poly(vinyl alcohol) binder[J]. Journal of Industrial and Engineering Chemistry, 2011, 17(4): 717-722. |
35 | Jain A, Kim J, Owoseni O M, et al. Aqueous-processed, high-capacity electrodes for membrane capacitive deionization[J]. Environmental Science & Technology, 2018, 52(10): 5859-5867. |
[1] | 吕龙义, 及文博, 韩沐达, 李伟光, 高文芳, 刘晓阳, 孙丽, 王鹏飞, 任芝军, 张光明. 铁基导电材料强化厌氧去除卤代有机污染物:研究进展及未来展望[J]. 化工学报, 2023, 74(8): 3193-3202. |
[2] | 屈园浩, 邓文义, 谢晓丹, 苏亚欣. 活性炭/石墨辅助污泥电渗脱水研究[J]. 化工学报, 2023, 74(7): 3038-3050. |
[3] | 黄陆月, 刘畅, 许勇毅, 邢浩若, 王峰, 马双忱. CDI二维浓度传质模型的建立以及实验验证[J]. 化工学报, 2022, 73(7): 2933-2943. |
[4] | 王祺, 房阔, 贺聪慧, 王凯军. 流动电极电容去离子技术综述:研究进展与未来挑战[J]. 化工学报, 2022, 73(3): 975-989. |
[5] | 刘立, 蒋鹏, 王伟, 张同桓, 穆立文, 陆小华, 朱家华. 基于过程模拟和随机森林模型的生物质制氢过程因素分析与预测[J]. 化工学报, 2022, 73(11): 5230-5239. |
[6] | 张超, 陈健, 殷文华, 沈圆辉, 钮朝阳, 余秀鑫, 张东辉, 唐忠利. 变压吸附氢气纯化过程瞬态分析[J]. 化工学报, 2022, 73(1): 308-321. |
[7] | 演康, 杨颂, 刘守军, 杨超, 樊惠玲, 上官炬. 低阶煤原位制备ZnO基活性炭脱硫剂[J]. 化工学报, 2021, 72(9): 4921-4930. |
[8] | 刘一铮, 石斌, 冉岭, 唐军, 谭思平, 刘江涛, 张鹏, 赵金保. 热电池电解质与隔膜材料研究进展[J]. 化工学报, 2021, 72(7): 3524-3537. |
[9] | 王晶, 韩巧宁, 雷以廷, 唐曼, 陈丽红, 车俊达, 刘祖广. 一步法制备富氧木质素活性炭及其亚甲基蓝吸附性能[J]. 化工学报, 2021, 72(5): 2826-2836. |
[10] | 焦帅, 杨磊, 武婷婷, 李宏强, 吕辉鸿, 何孝军. 混合盐模板法制备超级电容器用氮掺杂分级多孔碳纳米片[J]. 化工学报, 2021, 72(5): 2869-2877. |
[11] | 蒋雯雯, 聂鹏飞, 胡彬, 李菁菁, 刘建允. Al2O3/AC正极选择性电容吸附水中氟离子[J]. 化工学报, 2021, 72(5): 2817-2825. |
[12] | 王丽明, 杜淼, 单国荣, 卢青, 宋义虎. 低生热橡胶复合体系的研究进展[J]. 化工学报, 2021, 72(2): 863-875. |
[13] | 何鹏鹏, 赵颂, 毛晨岳, 王志, 王纪孝. 耐溶剂复合纳滤膜的研究进展[J]. 化工学报, 2021, 72(2): 727-747. |
[14] | 曹佳宁, 高翔, 罗英武, 苏荣欣. 一种用于磷酸铁锂电极的水性黏结剂制备与性能研究[J]. 化工学报, 2021, 72(2): 1169-1180. |
[15] | 唐子龙,肖凡凡,尹玉华,李森雨,汪靖伦. 功能硅烷在有机-无机复合固态电解质中的应用研究进展[J]. 化工学报, 2021, 72(10): 5002-5015. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 696
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 374
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||